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3.1.2 Vzorkovani a diskrétni ¢as

o v/

Jak jsem jiz predeslal vySe, na vodorovné ose grafl Cislicovych signali mohou byt rGzné veliciny.
Jedna veli¢ina se viak vyskytuje obzvlaité casto a tou je cas. Rada €islicovych signalQ je totiz
ziskdvana mérenim ¢i vypoctem casovych pribéhd - zaznama signalll a to analogovych nebo pfimo
Cislicovych. Pfi méreni teploty kazdou hodinu béhem dne si budete zapisovat do tabulky dvé fady
Cisel - teplotu a prislusny ¢as. Takovy signal je jiz Cislicovy a hodnoty ¢asu na vodorovné ose jsou jiz
timto mérenim dany. Jind situace nastane, kdyz bude méren signal analogovy a do cislicové podoby
bude preveden pomoci prevodnik(l A/D, ¢asto nazyvanych obvody ADC (Analog to Digital Converter -
prevodnik z analogové do digitalni podoby). Na vystupu obvodu ADC ma tedy signal jiz Cislicovou
podobu. Cisla, obsazena v tomto signdlu jisté souviseji s plvodnim analogovym signalem. llustraéni
pfiklad vzniku cislicového signalu z analogového ukazuje obr.3.4 (signal neni kvantovan).

| Command Window - Figure 1 =1k

File Edit ¥iew Insert Tools Desktop Window Help o
=» ta=0:2*%pi/1000:Z2*pi; D& kAR aANe E 08 80
> ua=sin(ta); Prevod analogoveho signalu na cislicovy
Fr otd=0:Z%pi/f10:2%pi; 1l

> ud=sinitd); ‘/Analogovy signal

»» td=td(l:end-1):
3 ud=ud{l:end-1): 0.5f
>x plotita,ual:

> hold on E
»x stemitd,ud, '£i11'") S
e

Cislicovy signal

4 5 6

3
t[s]

Obr.3.4. Pfrevod analogového signdlu do Cislicové podoby.

Obrazek vlevo ukazuje prikazy, pouzité k vytvoreni pravého grafického priibéhu, ktery byl poté
pfimo v menu obrazku dotvoren (nazev, popisky apod.). Z Casového priabéhu je vidét, Ze pokud
prevedete analogovy signal na Cislicovy, nabude podobu prosté posloupnosti Cisel. Vodorovna osa je
vytvorena a veli¢ina na ni ma vyznam casu. Pfi pohledu na oba signaly, analogovy i Cislicovy, je
patrné, Ze cislicovy signdl je tvoren vzorky analogového signdlu v urcitych, pravidelné se opakujicich
Casovych intervalech, danych vektorem casové osy. Na obr.3.5 je Cislicovy signdl z obr.3.4 ukazan
v podobé posloupnosti. V hornim fadku jsou cisla, odpovidajici svislé ose (funkéni hodnoty signalu),
druhy fadek predstavuje vodorovnou osu grafu (¢as). Z obr.3.4 plyne, Ze tzv. ,analogovy“ signal je ve
skutecnosti také tvoren konecnou fadou cisel (vektor u,), avsak pocet Cisel je velky a proto se tento
signal tvari jako analogovy. Tato ,finta” je jedinou moznosti, jak pracovat s ,analogovymi“ signdly
v MATLAB.



Command Window

x> [ud;td]
ans =
u} 0.5878 0.9511 0.9511 0.5878 0.oooo0 -0.5878 -0.9511 -0.9511 —-0.5878
u} 0.6283 1.2566 1.8850 2.5133 3.1416 3.76599 4.3982 5.0265 5.6549
g

Obr.3.5. Cislicovy signal z obr.3.4 v podobé posloupnosti spolu s éasovou osou.

3.1.2.1 Vzorkovani

Na zakladé predchoziho pfikladu mizeme napsat, Ze pokud Cislicovy signal vznikl z analogového,
pak predstavuje vzorky plvodniho analogového prototypu. Z hlediska vodorovné osy, ¢asu, jde tedy
o vzorky, vniklé procesem vzorkovani. Vzorkovadni je tedy procesem, kterym z analogového signdlu
ziskame jeho vzorky na casové ose. Tyto vzorky jsou definovany jen v urcitych ¢asovych okamzicich
avbéinych pripadech (ale ne ve vsech) jsou podél casové osy rozprostieny pravidelné. O
periodickych signdlech pisi v kapitole 2.3.2. Odtud vime, Ze jednim z parametr( téchto signall je

opakovaci perioda 7; ¢i opakovaci kmitocet [ff. U dislicovych signdld, vzniklych vzorkovanim
analogovych signald, je jednim z nejduleZitéjsich parametrl vzorkovaci perioda 7, nebo vzorkovaci

kmitoCet F_. Vzorkovaci perioda je doba mezi jednotlivymi vzorky, tedy vzdalenost mezi nimi

v sekundach [s]. Pfevracend hodnota vzorkovaci periody je vzorkovacim kmito¢tem v jednotkach
Hertz (Hz = s*). Tyto zakladni pojmy jsou ilustrovany na obr.3.6.

<} Figure 1 E@@ < Figure 1 g@@
File Edit Wiew Insert Tools Desktop Window Help £ File Edit Yiew Insert Tools Desktop Window Help L]
DS kaRaOe €08 =0 DGR aMe|E 08 =0
Cislicoal jako casova posloupnost vzorku Cislicovy signal jako casova posloupnost vzorku
1r e o 10 a¥
05) T, = 6,283[ms] 05 T, = 6,283[ms]
= o A| = T T - A|
£ b E b 1 1
= > - = >—ie
oel 1= 0,6283[ms| o5l T =0,3142[ms]
1 1
F,=—=1592[Hz] F,=—=3183[Hz]
T T
-1 [ L vz L L L 1 1 -1 [ L vz 1 1 L 1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t [ms] t [ms]

Obr.3.6. K pojm0m vzorkovaci perioda a vzorkovaci kmitocet.

Symboly T,, a F,, na obr.3.6 oznacuji vzorkovaci periodu a vzorkovaci kmitocet Cislicovych vzork(.
Jde tedy o parametry, vztahujici se k vlastnim vzorkiim. Symbolem 7 je v grafech oznacena perioda

plGvodniho analogového periodického signalu, tedy spojité obalky. Pokud znate vzorkovaci periodu,
tedy vzdalenost vzork( a pocet vzorkd vramci periody plvodniho analogového signdlu, snadno

vypoctete jeho plvodni periodul;. A naopak, je-li zndma plvodni perioda 7;, pak na zdkladé

znalosti T,, nebo F,, Ize vypocitat pocet vzork( v rdmci jedné periody plvodniho analogového signalu.



Jinymi slovy, namisto toho, abychom definovali tfi parametry, tedy T,,, pocet vzorki a T, lze

definovat pouze dva a ten treti dopocitat, bude-li to potfeba. Pfi praci se signdly se velmi casto

pouzivd pomér l:%[—], symbolem F; oznaCujeme opakovaci kmitocet analogového
vz 0
periodického signalu a plati F; :TL[Hz]. Vteorii jsou definovany a uZivany také normované
0
- . = I = T, v 1w , Y
veli¢iny, kdy plati: F :F—[—] aT :T—[—]. V pfipadé obr.3.6 lze u prvniho grafu vypocitat:

T, 6283107 6,283 _
T. 0,6283.10° 0,6283

vz

T, _ 6,283.10° 6,283 _
T. 03142107 03142

10 a 20 jsou tedy pocty vzorkd vramci jedné periody plvodniho analogového signdlu (obalky).

10[-], u druhého grafu 20[-]. Cisla

Vyhodou je, Ze znate-li uvedené poméry ;—0[—], pak pfi zadani T, Ize ihned dopoditat 7, a naopak.

Ukazme si to v nasledujicich ptikladech.

Priklad 3.1.

Periodicky analogovy signal byl prevodnikem ADC preveden do Cislicové podoby a nacten do
souboru na pevném disku pocitace. Bylo zjiSténo, Ze pocet vzork( v rdmci jedné periody analogového
signalu byl 100. Jaky byl pouZity vzorkovaci kmitoCet a vzorkovaci perioda, byl-li kmitocet

analogového signalu £, = 400Hz.

Resent: %:100[—] = F,_=100.F, F, =100.400, F,, = 40 kHz

vz
0

1 1 y
T. ==\ T.=— T.=2510°,T, =25
TR T 4010° il

Pozndmka: vzorkovaci kmitocet je dan pouzitym prevodnikem ADC. Nékdy ma uzZivatel
moznost jej ménit, jindy je pevné vazan na dany typ prevodniku &i zatizeni.

Priklad 3.2.

U signdlu z prikladu 3.1 potfebujeme zajistit, aby v ramci jedné periody analogového signalu byl
dvojnasobné vyssi pocet vzork(. Jaky vzorkovaci kmitocet je potfebné zvolit?

Resent: %: 200-] = F_=200.F,F, =200.400, F, = 80kH:z

0
Pouceni: je jisté zfejmé, Ze zvySeni vzorkovaciho kmito¢tu na dvojndsobek zpUsobi
dvojnasobny narust poctu vzorkd v ramci jedné periody analogového signalu.

10



3.1.2.2 Diskrétni ¢as

Podivejme se jesté jednou na obr.3.2 a obr.3.3. Na vodorovné ose 2D grafu mohou byt tfi veliciny.
Jde o prosté pofadi vzorkii n, spojity ¢as ¢ (continuous-time) a tzv. diskrétni ¢as n1_ (discrete-
time), viz obr.3.7. Rozdil mezi spojitym a diskrétnim casem je zfejmy. Spojity Cas je spojitou velic¢inou,
je tedy definovan v kazdém bodé sledovaného c¢asového intervalu. Diskrétni cas je definovan pouze
v okamtZicich vzorkd.

a) 60 .
501 4 ;
40+ b y
e
= 30;
E
20+
4]
012345678910 nll
b) 50 P C) 60 &
50+ 4 y 50+ 4 2
40 3 3 40 ] ]
%30- S 30 1
= F
L 20+ L]
20 ‘ ‘Tw
10t 10'[ 11
i 0
0 10 20 30 40 50 tls] 0 T, 2Ty, oo 10T,, NTy [s]

Obr.3.7. RGzné velic¢iny na vodorovné ose grafu u vzorkovanych signald,
a) poradi vzorkd, b) spojity cas, c) diskrétni ¢as.

Je zfejmé, Ze pokud bude potfeba mit na vodorovné ose cas, bude tfeba informaci o ném nékde
ziskat. Napt. u souborl zvukového formatu *.wav, pouZivaném v operacnim systému Windows, je

kromé vlastnich zvukovych vzorkd pfitomna informace o vzorkovacim kmitoétu F_. Bez toho by

nebylo zfejmé, s jakou Cetnosti byla data ziskana, a nebylo by moZné je stejnou rychlosti prehrat, viz
napf. priklad 5.5 v kapitole 5.3.2.5. Cisla bez dal3ich informaci jsou pouhymi ¢&isly.

4.4.1 Generovani harmonickych signalu

Harmonickym signalem oznacujeme signal, jehoZz casovy prlibéh lze popsat (modelovat) funkcemi
sinus nebo kosinus, viz kapitoly 2.2.2, 2.3.2 a 2.3.3. Harmonicky signal je zcela definovan tfemi

parametry, kterymi jsou amplituda S, perioda T, a pocatecni faze ¢, viz obr.4.38.

11



s(t)
a)

A
4

s(t)=S,,.cos(w.t+¢),

s(t)

Obr.4.38. Casovy priibéh harmonického signalu a jeho parametry,

a) na vodorovné ose je Cas t,

b) na vodorovné ose je ot (S, a To beze zmény).

4.4.1.1 Prace s pfikazy ,sin“ a ,,cos”

Vytvofit ,,obycejny” harmonicky signal Ize velmi jednoduse pouzitim funkci jddra MATLAB sin a
cos. Pfipomernime, Ze tyto funkce patii mezi tzv. elementarni matematické funkce, jejichz prehled lze
obdrzZet napt. pomoci help elfun a jejichz syntaxe poufZiti je velmi jednoducha, viz help sin a help cos.
Funkce sin a cos mohou mit jako vstupni parametr budto jedno cislo (skalar) nebo vektor Cisel
a dokonce matici. Kolik Cisel vloZime jako vstupni parametr, tolik jich obdrzime zpét. Na obr.4.39 jsou
ukazany dva pfiklady tvorby signdlu harmonického pribéhu. PFi pouZiti pfikazu stem je zdlraznén
diskrétni charakter signalu. Oba harmonické signaly maji stejné parametry, tedy amplitudu 2.5V,
kmitocCet 1000 Hz a pocatecni fazi pi/4 [rad]. Jsou vykresleny dvé periody.

Command Window

=g
e
FE
=g

tl=0:0.002/100:0.002;
ul=zZ.5%2in(2%¥pi*1000%C1-pis4)
ploti(tl,ul)

grid on

12

i
s
rr
i

| Command Window

tl1=0:0.002/100:0.002;
ul=z.5%zin(Z*pi*1000*%t1-pi/s4):
stem(tl,ul)

grid on



File Edit “iew Insert Tools Deskiop Window Help File Edit View Insert Tools Desktop Window Help

DedEs K aafe © 0E 80 DS KRaMe® € 0B 8O0

Obr.4.39. Generovani harmonickych signal(.

4.4.1.2 Harmonicky signal s proménnym kmitoctem

Kmitocet harmonického signdlu se bude ménit v mezich a metodou, stanovenymi uZivatelem.
Zména kmitoctu maze byt linedrni, kvadraticka nebo logaritmicka, viz obr.4.40. Klicovym pfikazem je
pfikaz chirp. V prvnim ptikladu na obr.4.40 jsou jako jeho parametry zadany vektor ¢asové osy t,
pocatecni kmitocet 0 Hz, cilovy Cas 1 s, pfi némz bude kmitocet 2 Hz. Nebudou-li definovany zadné
dalsi parametry, bude zména kmito¢tu od 0 Hz do 2 Hz linedrni. Ve druhém prikladu je diky
parametru ‘quadratic’ zména kmitoc¢t v uvedenych mezich kvadraticka. Pti volbé ‘logarithmic’ pljde
o logaritmickou zménu.

Command Window
=x L=0:0.001:2;

»x y=chirp(t,0,1,2):
>» plotit, vl

< Figure 1 g@E|

File Edit “iew Insert Tools Deskiop wWindow Help

DeEE KR N® € 0E 80

08F

04F

04t

08
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Command Window - Figure 1 M=1ES

File Edit Wiew Insert Tools Desktop Window Help L

»» t=0:0.001:2;

»» y=chirpit,0,1,2, 'quadratic'): LezEHS % "R 'fr? @ E-I O0FE = O

»» plotit,v)

06

0.4F

02F

02F

04t

O6F

08+

Obr.4.40. Generovani harmonickych signali s proménnym kmitoctem prikazem chirp.

4.4.1.3 Napétove fizeny oscilator (vco)

Podstatou je generovani harmonického signdlu, jehoZz okamzity kmitocCet zavisi na okamzité
hodnoté jistého vektoru. Terminy , napétové fizeny oscilator” (voltage controlled oscillator - vco) jsou
zvoleny z praxe, kde oscilator (generator harmonického signdlu) je casto fizen veliCinou, jejimz
fyzikdlnim vyznamem je elektrické napéti. Jde vSak o jiz tak vSeobecné vzity a uznavany nazev
(termin), Ze se béiné pouZiva. Z hlediska MATLAB by se také dalo napsat, Ze jde o oscilator
s kmitoctem fizenym hodnotou.

Klicovym prikazem je prikaz vco. Mezi jeho hlavni parametry patti vektor hodnot, které fidi
kmitocet harmonického signdlu, oznacme jej x, referencni (nosny) kmitocet fc a vzorkovaci kmitocet
fs. Pro vysvétleni principu si predstavte, Ze vidite dva prlbéhy dat. Jeden nalezZi vektoru Fidicich
hodnot x a druhy vystupu ptikazu vco. Oba priabéhy plynou soucasné. Podle okamzité hodnoty
vektoru x je nastaven kmitocet vystupu. Zméni-li se hodnota vektoru x, okamzité se zméni kmitocet
vystupniho harmonického signalu. N obr.4.41 je ukazan princip fizeni.

14



| Command Window 2 Figure 1 CB)X]

File Edit “iew Insert Tools Desktop Window Help ¥
»» ®W=geros(1,1000); DeEE K REAME 08 8O3
»> x(1,[1:500])=-0.8:
> x {1, [501:1000])=0.5; ! TTTT TITT
FroySswVCoO (R, 2,900 0.8
>» plot iyl 0E
0.4 1
02 H
D H
02 H
0.4 H
06 1
0.8 1
: 0 100 200 300 400 500 600 70O 8O0 S00 1000

Obr.4.41. Zakladni princip pouziti pfikazu vco.

Je definovan vektor x ze samych nul o délce 1000 prvki. Poté je poloviné prvk( vektoru ptifazena
hodnota -0.8, druhé poloviné hodnota 0.8. Pfikaz vco obsahuje jako své parametry vektor x, déle
kmitocet referencniho signalu 2 Hz a kmitocet vzorkovaciho signadlu 90 Hz. Na obrazku, ziskaném
prikazem plot, je vidét vlastni fizeni kmitoctu. Do poloviny je kmitocet fizen cislem -0.8, od poloviny
Cislem 0.8. Jde tedy o dva rozdilné kmitocCty. Jaka je jejich hodnota? Rozsah pouzitelnych hodnot

vektoru x je xe<— 1,1>. Pro hodnotu -1 je kmitocet na vystupu roven 0 Hz, pro hodnotu O je

kmitocet roven kmitoctu referencniho signalu (tedy 2 Hz) a pro hodnotu 1 je kmitocet roven
dvojnasobku kmitoctu referencniho signalu. Je ziejmé, Ze mezi hodnotami -1 a 1 budou kmitocty
umérné konkrétni hodnoté. Je napf. mozné definovat fidici vektor x jako harmonicky signal. Potom se
bude kmitocet na vystupu ménit harmonicky. Pfikazu vco se vyuziva napt. pfi tvorbé nékterych typl
modulovanych signal(. Pro dalsi moznosti viz help.

5.2.2 Globalni a dalsi charakteristiky signala

Globalni charakteristiky charakterizuji Cislicovy signal podrobnéji a poskytuji dalsi cenné informace
o ném. Jejich vlastnosti je, Ze k jejich vypoctu je tfeba zpravidla pracovat se vSemi vzorky a navic
nékteré z nich maji integrdlni charakter, tedy urcuji vlastnosti signalu jako celku za urcity casovy
interval, resp. interval veli¢iny nezdvisle proménné. Zajimaji nas zejména tyto charakteristiky:

® mohutnost,

® stredni hodnota,

® smérodatna odchylka,

® median,

® okamzity vykon,

® ¢inny vykon (stfedni vykon, vykon signalu),
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® efektivni hodnota,

® energie signalu,

® vzajemna energie dvou signald,
® derivace,

® integral.

Nasledujici ¢asti kapitoly uvadéji vidy strucné teoretické zazemi a na prikladech vypocty
jednotlivych globalnich a dalSich charakteristik.

Pozndmka: protoze chapeme a priori vSechny Cislicové signaly jako aperiodické, budeme je
v dalSich ¢astech analyzy v ¢asové oblasti nazyvat impulzy.

5.2.2.1 Mohutnost impulzu

V pripadé analogovych signalll je mohutnost impulzu dana plochou, kterou vymezuje jeho graficky
prabéh v ramci doby trvani. Matematicky Ize plochu spojité funkce, jiz je dany signal modelovan,
vypocitat urcitym integralem. V pfipadé Cislicovych signalll je integral nahrazen sumou (souctem).
Pak mliZzeme naspat, Ze mohutnost je ddna souctem hodnot vsech vzork( impulzu, viz vztah (5.1).

M = is(k). (5.1)

k=—w

Jednotkou mohutnosti je jednotka signélu, je-li k dispozici. Teoretické meze sumace k € <— oo,oo>

se v pripadé praktickych signald méni na konkrétni pocet vzorkd. Na obr.5.5 je ilustrovan vypocet
mohutnosti, ktery je jisté velmi snadny. Cislicova data jsou ziskana nactenim souboru recycle.wav ze
slozky Windows/Media. Jde o soubor zvukovych dat, ktery slychate pfi vysypani koSe v operacnim
systému Windows XP. Po nacteni pfikazem wavread je zjistén rozmér proménné data, ktera obsahuje
vlastni vzorky zvukovych dat a velikost vzorkovaciho kmitoctu. Data jsou nahrana pouze monofonné,
tedy jednokanalové. Pomoci sum je pak ziskan soucet hodnot vSech vzorkd, tedy vlastni mohutnost
M. Pfipomenme, Ze ziskani souctu hodnot vzorkd pomoci cyklu for v m-souboru je sice alternativou,
avsak pro velkou ¢asovou narocnost tohoto pfistupu jej ptilis nedoporucujeme.
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Command Window

> [data, fve]=wavread|'c:4Tindowsh Mediahrecyole' )
»x size(data)

ans =

12671 1
=r fwa
fwz =

ZZ050

>» M=sum(data)

M =

0.2337

Obr.5.5. Vypocet mohutnosti M Cislicového aperiodického signalu.

5.2.2.2 Stredni hodnota

Stfedni hodnota je v teorii analogovych signald definovana jako primérna hodnota signdlu v ramci
jeho jedné periody. Vztahuje se tedy historicky k periodickym signdliim. My zde budeme tento termin
chapat ve vztahu ksignallim cislicovym a to stochastickym. Stfedni hodnota tedy bude jednou
z charakteristik ndhodné veliciny, viz kapitolu 4.4.10. Zde je konstatovano, Ze stfedni hodnota je
teoreticky definovana jako cislo, kolem kterého kolisaji hodnoty vybérovych primeérd, jez se pocitaji
vidy ze série hodnot ndhodné veliciny (mnoho realizaci ndhodného procesu). Tento fakt je vyjadren
rovnici (4.1). Bude-li k dispozici Cislicovy signal pouze v jediné realizaci a navic vSechny funkéni
hodnoty nahodné veliciny (vzorky) budou mit stejnou pravdépodobnost, pak se cely problém
redukuje do vypoctu bézného aritmetického prdmeéru, ktery je vyjadien vztahem (4.6), viz obr.5.6.
Toto tvrzeni by mélo byt spravné podloZzeno védomim, Ze stfedni hodnota by méla byt nezavisla na
konkrétni realizaci, tedy Ze jde o ergodicky nahodny proces. Pokud to neni zndmo ¢i zaruceno, vyjde
nam vypoctem pouze vice ¢i méné presny odhad stfedni hodnoty konkrétniho signdlu. Jednotkou
stfedni hodnoty je jednotka signalu.

Command Window

¥ Vek=randil,10)
Vek =

0.9501 0.2311 0.6068 0.4560 0.8913 0.7821 0.4565 0.0185 0.5z214 O.4447
> E=mean(Vek)

E =

0.5669

Obr.5.6a. Vypocet stiedni hodnoty Cislicového aperiodického signalu ve formé vektoru.
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Command Window

>» Mat=rand(5,10)

Mat =
0.6154 0.4057 0.0579 0.z20z28 0.0153 0.4186 0.8381 0.50z28 0.1934 0.6979
a.7919 0.9355 0.3529 0.1987 0.7468 0.5462 0.0196 0.70325 0.6822 0.3754
0.9:218 0.9169 0.8132 0.6038 0.4451 0.5252 0.6813 0.4z589 0.3028 0.g8800
0.7382 0.4103 0.0099 o.z27z2z2 0.9318 0.2026 0.3735 0.3046 0.5417 0.8537
0.1763 0.5936 0.1352 0.1953 0.4660 0.6721 0.5318 0.1337 0.150%2 0.5936

>» E=mean(Mat)

E=
0. 6487 0.7124 0.2745 0.2953 0.5210 0.5330 0.5501 0.4z271 0.3742 0.6767

Obr.5.6b. Vypocet stfedni hodnoty Cislicového aperiodického signalu ve formé matice;
je pocitana stfedni hodnota jednotlivych sloupc matice.

Command Window

> E=mean (Matc,5)

E =
0.49a66 0.6a602 0.7271 a.7oz7 0.7945 0.87397 0.1365 0.6614 0.5828 0.2259
0.858998 0.3420 0.3093 0.5466 0.2568 0.2714 0.0118 0.25844 0.4235 0.5798
0.8216 0.z337 0.8383 0. 443432 0.52z¢6 0.z3z3 0.5939 0.4592 0.5155 0.7604
0.6449 0.341z2 0.5831 0.6946 0.8801 0.8757 0.1991 0.0645 0.3340 0.5298
0.8180 0.5341 0.3704 0.6213 0.1730 0.7373 0.z987 0.9883 0.43z9 0.6405

>x> E=mean (Mat,2)

.S0EE
4625
. 5809
L0132
SIS [EAES:

o oo o a

Obr.5.6c. Vypocet stfedni hodnoty Cislicového aperiodického signdlu ve formé matice;
je pocitana stfedni hodnota jednotlivych radkd matice.

Je-li pfikaz mean aplikovan na matici, pak vraci vektor Cisel, jejichz vyznamem je stfedni hodnota
jednotlivych sloupcd, resp. radkd.

Jak jsem ukazal v kapitole 4.4.10, jsou pojmy jako stfedni hodnota, rozptyl apod. Ciselnymi
charakteristikami ndhodné veliciny a zastupuji tak mnohdy velmi pracné az nemozné ziskani rozlozeni
hustoty pravdépodobnosti ndhodné veliciny. Jinou mozZnosti je vypocet a kresleni histograma, ze
kterych je patrna i stfedni hodnota, nejlépe je-li histogram dostatecné , husty”, tedy jsou-li intervaly
datovych hodnot na vodorovné ose dostatecné malé, viz obr.5.7 (ndzorné jen u nékterych rozdéleni).
Pak histogram jiz svym tvarem pfipominda konkrétni rozloZeni, v nasem pfipadé normdlni. Konstanty
Sa R maji vyznam stfedni hodnoty a rozptylu. Neni-li k dispozici jind mozZnost, Ize tedy stredni
hodnotu odhadovat i takto. Stfedni hodnota v histogramu signalu s Gaussovskym rozdélenim hustoty
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pravdépodobnosti reprezentuje opravdu stfed, tedy Cislo 100 na vodorovné ose (nejvétsi
pravdépodobnost vyskytu).

Terminologicky je stfedni hodnota nékdy oznacovana jako stejnosmérna hodnota i stejnosmérnad
slozka signdlu. Toto oznaceni se pouZivd napt. v elektrotechnice z dlivodl vyzdvizeni polarity
posunuti jinak v ¢ase proménného signalu. Jindy terminem pro stejnosmérny signal rozumime signal
konstantni, tedy v ¢ase neproménny.

< Figure 1
File Edit BEEIN Insert Tools Desktop \Window Help k]

DEedE h REQO® E 0B =80

| Command Window 8000

Fx B=100; 7000 - ]
>> R=1:
>> Data=S+sgrt (F) *randn (1, 100000) ; 5000 - i

>> hist (Data,50)

5000 - J
4000
3000 - J
2000 - J
1000 ‘ ‘I 4
ol , __4-I|III Illl-i__ —
97 98 99

95 96 100 101 102 103 104 105

Obr.5.7. Priblizny odhad stfedni hodnoty pomoci histogramu.

5.2.2.3 Smérodatna odchylka

Smérodatna odchylka (anglicky standard deviation) je matematicky odmocninou z rozptylu
nahodné veli¢iny. Je definovana vztahem (4.3), resp. (4.2). V MATLAB je dosaZitelna diky funkci std,
viz obr.5.8.

Command Window

»» 8=100;

> R=1:;

>» Data=3+sgro(R) *frandni(l, 1000007 ;
>» std(Data)

ans =

1.0013

Obr.5.8. Vypocet smérodatné odchylky pomoci ptikazu std.
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Plati podobné uvahy o ergodicité, jako v pripadé stfedni hodnoty. Aplikovan na matici vraci pfikaz
std vektor hodnot, jejichz vyznamem je smérodatna odchylka dat ve sloupcich matice. Ptikaz mize
mit jeSté dva dalSi parametry, viz help. Jednotkou smérodatné odchylky je jednotka signalu.

5.2.2.4 Median

V kapitole 4.4.10 jsem se vénoval také terminu medidn. Odtud vite, Ze median je 50 %-nim

v s s

kvantilem nahodné veliciny. Aplikujme postup zde uvedeny v obr.5.9. Opét plati vySe zminéné dvahy
o ergodicité.

Command Window

»x 3=100;

> R=1;

> Data=S3+sgreo (R) *frandnl, 100000)
>> median(Data)

ans =

100.0040

g
>> Data=S+sgrt (R) *frandnii, 10)

Data =
100.7508 95.4754 99,2129 100.3416 101.461¢ 101.2314 100.8059 100.8769 100.5692  100.466047
99.9053 100.3041 99.3066 99,1842 99.5242 100.0631 101.1863 99.0095 99.04158 99.4245
97.9245 101.0753 100.45934 99.6951 100.4677 100.9520 99.4237 100.3745 100.3967 95.6014

>x median(Data)

ans =

92,9053 100.3041 99,3066 99,6951 100.4677  100.92520 100.8052 100.3745 100.3367 99,4245

o
> median(Data,Z)

ans =
100.6708

99,4744
100.3856

Obr.5.9. Vypocet medianu cislicového stochastického signalu.

Komentar k vysledkim by byl analogicky vypoctu stfedni hodnoty (aplikace na vektor a matici).

5.2.2.5 Okamzity vykon impulzu

V teorii analogovych signdll je okamzity vykon dan kvadratem funkce, kterou signal modelujeme.
Analogicky v pfipadé Cislicovych signalt pljde tedy o vypocet nového signalu, jehoz vzorky budou mit
velikost, danou kvadratem téch plQvodnich. Vysledkem vypoctu tedy neni jeden parametr-skalar, ale
opét fada vzork( stejného poctu, jako plvodni signal. Plati tedy vztah:
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llustracni vypocet je na obr.5.10. Jednotkou okamzitého vykonu je kvadrat jednotky signalu.
Upozornéme, Ze pfi vypoctu je uzito operatoru ., ktery zajisti vypocet kvadratld hodnot jednotlivych
vzork(. Bez pouziti te¢ky vrati MATLAB chybové hlaseni, nebot by Slo o maticové nasobeni, kterézto
predpoklada jisty rozmér obou matic, resp. vektor(.

V literatufre je nékdy okamZzity vykon doplnén ptivlastkem normovany, coz souvisi sjeho
historickou definici, kdy je u analogovych signal( v elektrotechnice predpokladano jeho plsobeni do
odporové zatéze s jednotkovym (normovanym) odporem.

Command Window

>» Wektor=rand(1l,10)
Wektor =
0.0579 0.3529 0.8132 0.0099 0.1389 0.z20z28 0.1957 0.6038 o.z27z2z2 0.19538
»> p=Vektor.":Z
p =

0.0034 0.1245 0.6612 0.0001 0.01593 0.0411 0.0395 0.3646 0.0741 0.0395

Obr.5.10a. Vypocet okamzitého vykonu cislicového stochastického signalu ve formé vektoru.

Command Window

File Edit “iew Insert Tools Desktop ‘Window Help
t=0:4*pi/1000:4%pi;

sHE K RAM® € 0B = O
Fr u=3*sin(t) -

>x p=u.E:

>x plot (t,u)

*x hold on

> plot(t,p,'c']

Obr.5.10b. Pribéhy signdalu a jeho okamZitého vykonu.

5.2.3 Vypocet konvoluce

Algoritmy pro vypocet konvoluce dvou Ccislicovych signal(i tvori dlleZitou soucast DSP. Konvoluce
se vyuziva dosti Casto a to pfimo anebo jako soucdst rozsahlejSich vypoctl. Z hlediska fyzikalni
podstaty a porozuméni ji zavedeme v nasledujici ¢asti knihy spiSe intuitivné s minimem matematiky.
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5.2.3.1 Linearni diskrétni konvoluce

Nasim cilem je zavést pojem linedrni diskrétni konvoluce spiSe intuitivné. Abychom vsak toto
mohli realizovat, nevyhneme se nasledujicimu popisu dislicového signalu. Cislicovy signal je
posloupnosti Cisel - vzorkld. V porfadi prvni Cislo dané posloupnosti je mozné vyjadrit samostatné
pomoci diskrétniho jednotkového impulzu, viz kapitola 4.4.3. Bude-li hodnota tohoto cisla rGzna od
jednicky, pak bude muset byt diskrétni jednotkovy impulz ndsoben timto cislem, nebot jeho hodnota
je rovna 1. Vporadi druhé dislo posloupnosti, tedy o jeden krok zpoZzdéné, lze opét vyjadrit
diskrétnim jednotkovym impulzem. Ten bude taktéz vynasoben hodnotou druhého ¢isla posloupnosti
a navic zpozdén (posunut) o jeden krok-poradové Cislo. Tento postup, tedy nahradu ¢i popis kazdého
Cisla signalu diskrétnim jednotkovym impulzem, s hodnotou vyndsobenou timto cislem a pfislusné
posunutym, provedeme myslenkové pro kazdé Cislo posloupnosti. Secteme-li poté vsechny
vynasobené a posunuté diskrétni jednotkové impulzy, dostaneme plvodni posloupnost dcisel.
Uvedeny postup dokumentuje obr.5.20.

a) o, Yn y,=0,33,
1 0,3 /
0123 n 0123 n

b)
Yn y.=0,53 +1.5 ,+2.8 ,+18 ,+0,58 ,+0,255 .
5
1 d?
yn = Z yk'5n-k
n=0

012345 n
y.={0,512 10,5 0,25}

Obr.5.20. Cislicovy signal jako suma vaZenych posunutych diskrétnich jednotkovych impulzd,
a) diskrétni jednotkovy impulz J, a jeho vyuziti k popisu jednotlivych vzorka (&isel),

b) konkrétni Cislicovy signal y,, vyjadfeny pomoci diskrétnich jednotkovych impulzd.

Nasobeni diskrétnich jednotkovych impulzi hodnotami dCisel posloupnosti nazyvame casto
vdZenim (nasobeni vahou-hodnotou prvkd posloupnosti). Vyjadifime-li tedy libovolny Ccislicovy signal
vySe uvedenym postupem, fikdme, Ze dany signdl byl vyjaddfen souctem (sumou) vazenych
posunutych diskrétnich jednotkovych impulzi. VySe uvedeny postup vyuzijeme v nasledujicich
partiich.

Uvazujte nyni libovolny Ccislicovy systém (soustavu). Timto systémem je v praxi vidy néjaky
algoritmus, tedy postup, pfi némz je ze vstupni posloupnosti Cisel vytvorena posloupnost vystupni
bez ohledu na konkrétni fyzickou realizaci (implementaci). Necht je dany Cislicovy systém linearni,
tedy hodnoty vzork(l na vystupu jsou v pfimé umére k hodnotam vstupu (zjednodusené). Na takovy
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Cislicovy systém pfichdazeji postupné vzorky (¢isla) vstupni posloupnosti X, a na jeho vystupu se
objevuji vzorky odezvy y,. Zamysleme se nad moznosti vypocitat vzorky vystupni posloupnosti,
budou-li zndmy vzorky posloupnosti vstupni a prislusné parametry onoho Cislicového systému. Jde

tedy o vypocet odezvy linedrniho Cislicového systému (algoritmu) na vstupni budici posloupnost.
DulezZitym terminem v této souvislosti je impulzni odezva linedrniho Cislicového systému. Impulzni
odezva s, je odezvou systému v pfipadé, kdy na vstupu pdsobi pouze jednotkovy impulz O, . Je-li
systém buzen vzorkem (¢islem) s jinou hodnotou, nez 1 a navic posunutym na vodorovné ose (Casto
v Case), pak na vystupu bude posloupnost vzork(, které tvarové odpovidaji impulzni odezvé, ale
vSechny jeji vzorky jsou nasobeny (vazeny) hodnotou vstupniho vzorku a celad impulzni odezva bude
posunuta stejné, jako budici vzorek, viz obr.5.21. Pro usnadnéni predpokladejme, Ze pocet
nenulovych vzork(l impulzni odezvy je 4 s poradovymi Cisly (indexy) na vodorovné ose 0 aZ 3.
V3imnéte si, Ze vlivem posunuti budiciho vzorku x, ve druhém pfipadé dojde také k posunuti vazené
impulzni odezvy, tedy kcelkovému prodlouZzeni poctu vzork(li na vystupu. Poznamenejme, Ze
jednotkou vzorkd vystupni posloupnosti se nezabyvame, nebot tuto nelze stanovit obecné
jednoznacné (mU(ze byt rizna podle konkrétni fyzikalni povahy vzorkd, chapané uzivatelem).

/ impulzni odezva
ynzhn

1 ‘ |
|
1

0123456 n

Y

Cislicovy y,={0,51,5 10,25}
Oo— f — o
systém
X _ y,
n an_0,5.8n_1 1- yn=X1'hn-1
11 ]
- I ) | Il
0123 n 01234567 N

y,={0 0,25 0,75 0,5 0,125}
Obr.5.21. Odezva linedrniho Cislicového systému na jednotkovy impulz a na obecny vstupni vzorek.
Bude zajimavé nyni sledovat, jaka bude odezva v pripadé, kdy na vstupu systému budou pusobit

oba vstupni vzorky zobr.5.21, tedy kdyZ bude vstupni posloupnost sestdvat z obou vzork(, viz
obr.5.22.

h y
X x,=6,+0,9.5, Cl’snlovy 1n
o—| o
systém | .
0123 n 0123456 N
x ={10,5) y.={0,5 1,75 1,75 0,75 0,125}

Obr.5.22. Odezva linearniho Cislicového systému na obecnou vstupni posloupnost.
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Dokézat vypocitat vystupni posloupnost y, zobr.5.22 Ize nékolika zplsoby. Jak jsem naznadil

vyse, jde o linearni systém. V linearnich pripadech vzdy plati tzv. princip superpozice. Ten nam fika, ze
plsobi-li na vstup linedrniho systému soucet vice budicich podnétl (vzorkd, zdroji apod.), pak Ize
odezvu ziskat jako soucet dil¢ich odezev na ony podnéty, plsobici samostatné. Jednoduse napsano,
tahaji-li dva silaci za lano, je celkova sila dana souctem sil, plsobi-li kazdy zvlast. Podle tohoto
principu je jasné, Ze k vypoctu odezvy na vstupni posloupnost podle obr.5.22 staci secist dil¢i odezvy

y, zobr.5.21, kdy plsobi kazdy vzorek samostatné. Secteni je mozné provést budto graficky nebo

Ciselné. Budeme-li séitat dil¢i odezvy z obr.5.21, pak mQzeme psat:
y,=10,5+0 1,5+0,25 1+0,75 0,25+0,5 0+0,125}=1{0,5 1,75 1,75 0,75 0,125}.

Uvedeny, intuitivné zavedeny zplsob vypoctu celkové odezvy na libovolnou vstupni posloupnost
Ize aplikovat obecné. V tom pripadé Ize zapsat algoritmus vypoctu v podobé sumy podle vztahu (5.8).

yn = Zn:xm'hn—m (58)
m=0

Vztah (5.8) umoznuje vypocitat hodnoty vzorkd vystupni posloupnosti linearniho Ccislicového
systému, jsou-li zndmy vstupni posloupnost x, a impulzni odezva systému /. Pokusme se nyni

vztah (5.8) aplikovat a vypocitat analyticky hodnoty vzorkd vystupu podle obr.5.22. Vypocet je
uveden jako obr.5.23.

N,=N,+N,-1=2+4-1=5 pocet €lend vystupni posloupnosti (indexy
Y, = me b, vychozi vztah pro linedrni diskrétni
m=0

0
Yo =D Xohy =x4hy =1.05=10,5

m=0

1
=2 %, h, =Xk +x.h =1.1,5+0,5.0,5=175

m=0

2
Yy = 2 Xy, = Xohy + x4 x,hy =1.140,5.1,5+0.0,5=1,75

m=0

3
Vs =D Xhy = Xohy + X, by + x, h + x,.hy =1.0,2540,5.1+0.1,5+ 0.0,5=0,75

m=0

4
Va= me by, =x0hy + X hy + X,y + x,. 0y + x,.8 =1.0+0,5.0,25+0.1+0.1,5+0.0,5= 0,125

m=0
y=1{0,5 1,75 1,75 0,75 0,125}

Obr.5.23. Aplikace vztahu (5.8) k vypoctu vzork( vystupni posloupnosti z obr.5.22.

Podivejme se nyni na pocet vzorkd vystupni posloupnosti, vySe pocitané. Pocet nenulovych

vstupnich vzorkd z obr.5.22 je N_ =2, délka impulzni odezvy na obr.5.21 je N, =4 a délka vystupni
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posloupnosti pak Ny = 5. Ztoho plyne jednoduchy vztah pro pocet vzork( vystupni posloupnosti:

Ny =N_+ N, -1, pouZity vobr.5.23. Vztah (5.8) je Casto nazyvan linedrni diskrétni konvoluci.

Prozatim jsme se nezamysleli nad terminem konvoluce. Bude diskutovan niZe v kapitole o spektralni
analyze v souvislosti s vétou o soucinu obraz(, viz kapitola 5.3.

Vypocet linedrni diskrétni konvoluce v MATLAB je snadny diky intuitivnimu ptikazu conv, viz

obr.5.24. Jako své parametry potfebuje pfikaz conv vektory dvou posloupnosti obecné rizné délky. Je
zajimavé, Ze poradi obou vektor( Ize zaménit.

Command Window

»x ¥=[1 0.5]:
»>» h=[0.5 1.5 1 0.25]:
Fx FECoORV X, Il

¥ =

0.5000 1.7500 1.7500 0.7500 0.1z250

>x stemiy, '£ill')

) Figure 1 [ Dg|
File Edit Wiew Insert Tools Desktop Window Help k]

DedES h RAaO® E( 08 8O0

181
161
1.4F

1.2F

Obr.5.24. Vypocet linearni diskrétni konvoluce v systému MATLAB, srovnejte s obr.5.22 a obr.5.23.
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Priklad 5.2

Vypoctéte prvnich 11 slozek amplitudového a fazového

spektra periodického obdélnikového
signalu podle obr.5.57.

p() £, =1Fa
1, =5ms
Pm t,=1ms
> n « T, t [ms]

Obr.5.57. Casovy priibéh periodického signalu z prikladu 5.2.

Reseni: vyjdeme ze vztahu v tab.5.2 pro vypocet komplexnich spektralnich koeficient(:

. 1 -
¢, = F.jp(t).e ISt dt e zadano T, =5ms, t. =1ms a P, =1Pa. Pro dali

0 7

postup  je tfeba znat analyticky funkci ¢asového pribéh p(t). V rdmci jedné periody

je v pripadé obdélnika touto funkci konstanta, tedy plati: p(t) = P . Vychozi vztah
Ize poté upravit:

~

1.

.1 y 1 P} P, [ icont
¢ =—.Ip(l‘).€ k@t go 1 IPm'e k.t dt=—'”.je kOt go n .[e j.k.QO.t]Eti _
T, 7 T, 4 0o 'y T, jkQ )
2 2
_ P, ' e—j.k.QO.%’ ~ e+j.k.QO.% | a_ g
JKQT, podle Eulerovy véty plati  sSn« =T
J
. > j-k.Qo.%" —j.k.Qo.%’
o = Pm e/.k.QO.E_e—j.k.QO.E B 2pm e —e n sinl kO t_l
bkQT) kQT, 2 kQT, ‘

, . Y . Sm o
Vysledek Ize upravit do Casto pouzivané funkce

a
dobfe znam a umozniuje snadné vyhodnoceni vysledku.

=sin c(a), nebot jeji prabéh je

“rozsifeni vyrazem -
< sinl kO, " i
2Pm ti tz ’ 2 ! 1 L
e = sin| kQQy = |=P, — , =P —.sinc -
kQT, 2 » kg, e 0.
y e

Podle posledniho vztahu lze jiz uréovat amplitudy a faze jednotlivych harmonickych
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slozek. Jesté nez toto uvedeme, je tfeba vypocitat parametry prvni spektralni slozky,
tedy konstanty, jejiz vyznam je stfedni hodnota casového pribéhu. Tuto konstantu
nemlzZeme jednoduSe vypocitat z odvozeného vztahu dosazenim za k=0, nebot

bychom obdrzZeli neurcity vyraz 6 Z teorie vSak je znamo, Ze stfedni hodnotu lze
vypocitat nasledovné:

i -r. L {pd

'ﬂl»—‘

t;
2

Vysledky odvozeni mlzZeme jiz shrnout:

(5.23)

P =P

ék = IDm ;_lsm CLkQO %j’ IDk = 2'|Ck 4 m ;_l
0

0

Podle rovnice (5.23) Ize jiz jednoduse vypocitat konkrétni hodnoty spektralnich slozZek.
Jednotky vZdy odpovidaji jednotkdm zadané veliciny, v nasem pfipadé Pa.
Vztah (5.23) Ize konkretizovat dosazenim zadanych ciselnych hodnot takto:

¢, =0,2.sin ¢(0,2kx) = 0,2. sin(0,2kx)

\ 0,2](72'

spektralni koeficienty ¢, harmonické slozky spektra

, —2|ck

=c, =0,2.

Dosazovanim za k =1,2,3,...,10 vypotteme potiebné hodnoty, viz tabulka tab.5.3.

Tab.5.3. Konkrétni vypoctené hodnoty spektralnich ¢ar priabéhu na obr.5.57.

k ¢, [Pal ¢l [Pa] P, [Pd] o, [rad]
0 0,2 0,2 0,2 0
1 0,1871 0,1871 0,3742 0
2 0,1514 0,1514 0,3027 0
3 0,1009 0,1009 0,2018 0
4 0,0468 0,0468 0,0935 0
5 0 0 0 X
6 -0,03118 -0,03118 -0,06237 i
7 -0,04325 -0,04325 -0,08649 i
8 -0,03784 -0,03784 -0,07568 i
9 -0,02079 -0,02079 -0,04158 i
10 0 0 0 X

Spektralni koeficienty ¢, nam poslouZily jako vychozi hodnoty pro vypocet cilovych

parametrd harmonickych slozek spektra B, .
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Spektralni koeficienty ¢, jsou obecné funkcemi komplexni proménné a lze je psat ve

. ~ Ime . i e « %
tvaru ¢, = |ck|.e“”* , kde tgop, = £ .V nagem konkrétnim pfikladu viak vy3ly
k

koeficienty jako realnd &isla, tedy plati: Imc, =0 = tg¢, = 0. Z toho plynou hodnoty

fazového spektra 0 nebo 7.V obou pfipadech je tangens roven nule, avsak je treba
zohlednit fakt, Ze fazové spektrum je lichou funkci (dikaz presahuje zamér kapitoly).

Pozndmka: budete-li spektralni koeficienty a harmonické slozky pocitat za pomoci kalkulacky,
prepnéte ji do reZimu rad. V pfipadé vypoctl za pomoci pocitace vhodnym software
byva toto Casto zajisténo automaticky (implicitné).

Casovy priibéh a pribéhy obou spekter jsou uvedeny na obr.5.58.

Amplitudové spektrum

0,4

P =1Pa
p(t) " - _
71) =5ms 092 ‘\| PZ]_I/Y:]

At

0 02040608 112141618 2 f[kHz]

P t,=1ms

t [ms] [r(gla] Fazové spektrum

T
t. Ty

A 4
A

TT -

0 02040608 112141618 2 f[kHz]

Obr.5.58. Vysledna podoba spektra signalu z prikladu 5.2.

Je zajimavé, Ze v pfipadé obdélnikovych pulzi nabyva obalka amplitudového spektra v jistych
bodech nulovych hodnot. Tyto body na vodorovné ose, tedy ose kmitoctu, souviseji se Sifkou pulzu.

Nulovych hodnot obdlka nabyva vidy v bodech f = E, k=123
t

i

, jinak napsano, ve spektru

P e Iy oo S Y i Lwas ses ot P
vymizi vidy kazdd =% -td harmonickd slozka, v naSem pfipadé kaidd patd (nepoéitdme tu uplné
t.

1

prvni), viz tab.5.3. Maxima nabyva obalka amplitudového spektra pro nulovy kmitocet a jde o
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hodnotu 2.Pm.%, v pfikladu 5.2 vychazi konkrétné 0,4Pa. Prvni ¢éra, tedy stfedni hodnota

0

(matematicky véha), je vidy polovicni. S témito shrnutimi Ize spektrum nakreslit velmi snadno pro

libovolné parametry casového pribéhu. Na obr.5.59 je ilustrace k praktickému méreni spekter

pomoci spektralniho analyzatoru.

A:REF B:REF o MKR _ 10 090,000 Hz
80.00m 19.008 MAG 38.1882u v
[ v )0 ] MAG

N N TR

DIV DIV
19.00n 19.90

ATH 30 DE

Obr.5.59. Casovy priibéh a amplitudové spektrum realného obdélnikového signalu.

Jak je nasim zvykem na strankach knihy, doporucujeme v pfipadé potieby prostudovat dalsi

hodnotné prameny, napt. [2], [6] nebo [10]. Dobrym mistem pro pouceni mohou byt také vhodné

internetové stranky.

Spektrum neharmonickych periodickych signdli - diléi shrnuti:

kazdy periodicky signal, spliujici jisté matematické podminky, Ize vyjadrit ve formé
nekonecné rfady harmonickych funkci; tuto fadu nazyvdme Fourierovou fadou*,
Fourierova fada ma tfi tvary a kazdy tvar obsahuje jiny tvar koeficientd,

urcit spektrum znamena analyticky vypocitat koeficienty Fourierovy fady, tedy provést
integraci,

spektrum periodickych signal je ¢arové (diskrétni); vzdalenost mezi ¢arami je vidy rovna
kmitoctu ¢asového priibéhu,

vypocet koeficientli a harmonickych sloZek spektra vyZzaduje znalost funkéniho vztahu
pro zadany casovy pribéh; pokud tento vztah neni znam, nelze spektrum uvedenym
zpUsobem pocitat,

aby mohl byt periodicky neharmonicky signal podroben spektralni analyze, musi splfiiovat
tzv. Dirichletovy podminky,

pfi odvozovani vztah( pro koeficienty je tfeba jisté zkusenosti, aby byly vysledky

snadno interpretovatelné; nastésti pro mnoho ¢asovych pribéh jsou jiz koeficienty
odvozeny,

v pfipadé obdélnikovych pulzli Ize spektrum nakreslit snadno se znalosti nékolika udaj,
takto pojaté spektrum je teoreticky spravné a budeme se k nému odkazovat pti zavadéni
spektralni analyzy diskrétnich, resp. Cislicovych signald.

*Jean-Baptiste Joseph de Fourier (1768-1830) — prosluly holandsky matematik a fyzik. Kolem
roku 1822 formuloval ve své praci ,Analyticka teorie tepla“ zaklady Fourierovy metody FfeSeni
parcialnich diferencialnich rovnic. Jeho trigonometrické fady funkci dnes vyuzivame, mimo jiné,
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k vyjadfeni, popf. k aproximaci, periodickych funkci a spektralni analyze. Taktéz Fourierav
integral (5.24) je Fourierovym objevem. Jeho Zivotni osudy jsou velmi zajimavé a inspirativni.

Priklad 5.7

Tento priklad je zafazen pro demonstraci spektralni analyzy s vyuzitim tzv. diskrétni Fourierovy
transformacni matice. Pfipomenme, Ze pfipad byl jiz naznacen v poznamce kapitoly 5.3.2.2. Na
obr.5.78 je ukazan vypocet komplexnich koeficientll a zobrazeno amplitudové spektrum
Cislicového signdlu dvojim postupem. Prvni je klasicky, v predchozich prikladech uzivany
zpUsob, vyuZivajici funkce vnitini fft. Ve druhém pripadé pljde o vyuZiti zminéné transformacni
matice. Cilem je ukazat, Ze vysledky se nelisi.

Command Window

»» s3=0.54+2*%randnil,6):

> N=lengthi(s):

=x B3l=fft(s):;

»» Modl=Z2/6%3b=s(31); % mwodulove spektrum klasicky
F» A=dAftmtx (M) ; % wvytvoreni ctwvercowve DFT matice
Fx BE=3FL;

> Mod2=Z/6%abs(32); % modulove spektrum pomoci DFT matice
»» subplotiZ,1,1)

»» stem(Modl)

»» subplotiZ,1,2)

»x stem(Modz)

) Figure 1 CIEX
File Edit “iew Insert Tools Desktop ‘Window Help ™

DS kb RN € 08 =50

1 15 2 248 3 348 4 4.5 5 83

(s3]

1 15 2 25 3 35 4 4.5

Obr.5.78. Spektrdlni analyza Cislicového signalu s vyuZitim Fourierovy transformacni matice.

Jak je zfejmé z obr.5.78, plati pfi praci s transformacni matici vztah S = A.s, kde s je plvodni
vektor s Cislicovymi vzorky a S je vektor komplexnich koeficientl jeho spektra.
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Dalsi pouzivané varianty prikazu fft:

® pomodi fftshift namisto fft dojde k tomu, Ze prvni slozka spektra bude zobrazena ve stredu,

® pfi praci s dvou a vicerozmérnymi signaly je tfeba poutZit prikazy fft2, resp. fftn, kde n je
rozmeér,

® je-li prikaz fft aplikovan na matici, provede vypocet komplexniho spektra pro kazdy sloupec.

5.4 Casové - frekvenéni analyza

Klasicka spektrdlni analyza signal(i ve Fourierové smyslu predpoklada jeden dileZity predpoklad.
Signdl, ktery analyzujeme, se v priibéhu analyzy z hlediska frekvencniho obsahu neméni. Jinak
napsano, vzdy pfi vypoctech spekter uvazujeme cely signal. V praxi vSak existuje fada pfipadd, kdy je
délka signdlu neiumérné dlouha ¢i v principu nekonecnd nebo jde o signal s parametry proménnymi
v Case (nestaciondrni signdl). Pfedstavte si napft. situaci, Ze je tfeba pocitat spektra signall z néjakého
snimace, jenz snima mechanické napéti nosniku mostu pti prljezdu vozidel. Situace vas povede
k tomu, Ze pripojite zdaznamové zatizeni na vystup snimace a zaznamenate napf. 24 hodin zaznamu.
Nebo budete mit k dispozici data ze snimace signald EKG ¢i EEK ¢i zaznam koncertu na nosici CD.
Takové signdly jsou velmi dlouhé na to, aby byl proveden vypocet DFT (FFT) z celého zaznamu.
Vzhledem k ohromnému poctu vzorkd by vypocet trval mnoho hodin, desitek hodin nebo i dn(; o
vypoctu vredlném case pak nemd smyslu uvazovat vibec. Mimoto, nékteré signaly ani celé
k dispozici nemame, neboft jsou v principu nekonecéné (snima¢ mostu poskytuje data nepretrzité). A
nakonec jesté jedno omezeni klasické Fourierovy spektralni analyzy. Fourierova analyza vede na
kmitoctové spektrum, kdy na ose nezavisle proménné je kmitocet jednotlivych slozek spektra
(analogie s duhou). Ale co kdyZ vas bude zajimat, jak se jednotlivé spektradini slozky méni v case? To je
typické napt. v oblasti rozpoznani fecového signalu, kdy nas muize zajimat Casovy vyvoj nékterych
typickych slozek pro jednotlivé hlasky apod. To vsak klasicka Fourierova analyza v principu nedokaze,
nebot analyzuje signdl jako celek.

Ze vsech vySe uvedenych divod(, tedy pfrilisné délky signdlu Ci potfebé znalosti ¢asovych zmén
spektrdlnich slozek, je tfeba provadét spektralni analyzu jinym zplsobem. Mame k dispozici
v principu dvé moZnosti. Budto vyuzijeme vypocet spektra v jiném, neZ Fourierové smyslu, anebo
Fourierovu analyzu pouzijeme, ale rozdélime origindini signdl na useky konecné délky a nad kaZzdym
usekem provedeme ndmi probiranou analyzu s vyuZitim FFT. Ziskame tim casové fazend spektra
dil¢ich usekl (kratkodoba spektra), z nichz mlizeme usuzovat na jisty, ¢asové podminény vyvoj
spektra. Na rozdil od kapitoly 5.3.3 vSak neprovadime prlimérovani, ale snaZime se zachytit ¢asovy
vyvoj spektralnich slozek.

Analyzovany dislicovy, pro nase ucely velmi dlouhy signal, je rozdélen na dilci useky. Nad kazdym
je provedena DFT standardné pomoci FFT algoritmu. V ramci zvyseni rozliSeni ve spektru a zachovani
navaznosti mezi Useky jsou Useky voleny co nejdelsi a navic s uréitym presahem, viz obr.5.87.
Mimoto, je moZné provést analyzu nékolikrat a pokazdé vybrat jinou délku signdld (oken) tak, aby
bylo moZzné jesté zvysit rozliSeni ve spektralni oblasti (podrobnéjsi analyza). Podrobnosti uvadét
nebudeme, nebot je tfeba vyresit fad dilcich problém, napf. spojenych s redukci objemu dat.

Je-li pozadavek Ci potfeba vypocitat takové spektrum, pak vysledek byva zobrazen ve formé tzv.
spektrogramu. Spektrogram je 3D graf, ktery ma dvé osy nezdavisle proménné a to kmitocet a cas
(poradi spekter usekd). Jak je vidét z obr.5.87, jde o kratkodoba spektra jednotlivych Usek( signdlu
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fazena za sebou. Tato kratkodoba spektra jsou na obrazku naznacena jako spojitd obalka z divodl
prehlednosti, jinak jde samoziejmé o vzorky. Na svislé ose byva ¢asto amplitudové spektrum dané
veli¢iny nebo vykonové spektrum.

Spektrogram byva Casto zobrazovan jako 2D graf s tim, Ze jde o pohled shora na plvodni graf 3D.
Velikosti jednotlivych spektrdlnich c¢ar jsou pak rozliseny v redlu barevné, viz ilustrace na obr.5.87.
Ptikaz specgram ma fadu parametr(l, minimalné jde o vlastni data a dale dvé Cisla, udavajici délku
Usekd, resp. pocet bod( algoritmu FFT (zde 256) a vzorkovaci kmitocet. Prekryti usekl (overlap) je
implicitné voleno jako polovina jejich délky. Useky jsou ze signalu vybirdny implicitné pomoci
Hammingova okna zadané délky, viz priklad 5.9. UZivatel ma moZnost tyto a dal$i parametry ovlivnit
podle povahy fesené ulohy.

Use Use

Casovy priUbéh dIouhého/

O¢

Spektrogra

Use
us
Use

Use

kmito

Obr.5.87. llustrace k rozdéleni dlouhého signdalu na Useky a pojmu spektrogram.

Command Window

> [2,Fvz]=wavread|'hlaskaes']);
> B==3(:,1);
> specgramis,256,Fvs)
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Obr.5.88. Zakladni tvorba spektrogramu cislicového signalu.

Pro ucely vyuky Ci podrobnéjsiho seznameni se s pojmem spektrogram nabizi MATLAB interaktivni
demonstracni systém. Mdlzete jej spustit nékolika zplsoby. Budto prikazem specgramdemo
z hlavniho okna nebo z nabidky Start/Demos a vzobrazeném okné interaktivniho helpu vybrat
Toolboxes/Signal Processing/Spectral analysis and ... /Spectrogram Demo. Zobrazi se okno podle
obr.5.89 v redlu pékné v barvach. Pak lze mysi pohybovat kurzorem a sledovat souradnice, ménit
méritko (zoom), pocet bod( algoritmu FFT (délka okna), prekryti usek( apod.

J Spectrogram Demo
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Obr.5.89. Interaktivni demonstracni systém pro praci se spektrogramy.
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