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3.1.2 Vzorkování a diskrétní čas 

Jak jsem již předeslal výše, na vodorovné ose grafů číslicových signálů mohou být různé veličiny. 
Jedna veličina se však vyskytuje obzvláště často a tou je čas. Řada číslicových signálů je totiž 
získávána měřením či výpočtem časových průběhů - záznamů signálů a to analogových nebo přímo 
číslicových. Při měření teploty každou hodinu během dne si budete zapisovat do tabulky dvě řady 
čísel - teplotu a příslušný čas. Takový signál je již číslicový a hodnoty času na vodorovné ose jsou již 
tímto měřením dány. Jiná situace nastane, když bude měřen signál analogový a do číslicové podoby 
bude převeden pomocí převodníků A/D, často nazývaných obvody ADC (Analog to Digital Converter - 
převodník z analogové do digitální podoby). Na výstupu obvodu ADC má tedy signál již číslicovou 
podobu. Čísla, obsažená v tomto signálu jistě souvisejí s původním analogovým signálem. Ilustrační 
příklad vzniku číslicového signálu z analogového ukazuje obr.3.4 (signál není kvantován). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obr.3.4. Převod analogového signálu do číslicové podoby. 
 

Obrázek vlevo ukazuje příkazy, použité k vytvoření pravého grafického průběhu, který byl poté 
přímo v menu obrázku dotvořen (název, popisky apod.). Z časového průběhu je vidět, že pokud 
převedete analogový signál na číslicový, nabude podobu prosté posloupnosti čísel. Vodorovná osa je 
vytvořena a veličina na ní má význam času. Při pohledu na oba signály, analogový i číslicový, je 
patrné, že číslicový signál je tvořen vzorky analogového signálu v určitých, pravidelně se opakujících 
časových intervalech, daných vektorem časové osy. Na obr.3.5 je číslicový signál z obr.3.4 ukázán 
v podobě posloupnosti. V horním řádku jsou čísla, odpovídající svislé ose (funkční hodnoty signálu), 
druhý řádek představuje vodorovnou osu grafu (čas). Z obr.3.4 plyne, že tzv. „analogový“ signál je ve 
skutečnosti také tvořen konečnou řadou čísel (vektor ua), avšak počet čísel je velký a proto se tento 
signál tváří jako analogový. Tato „finta“ je jedinou možností, jak pracovat s „analogovými“ signály 
v MATLAB. 
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Obr.3.5. Číslicový signál z obr.3.4 v podobě posloupnosti spolu s časovou osou. 

 

3.1.2.1 Vzorkování 

Na základě předchozího příkladu můžeme napsat, že pokud číslicový signál vznikl z analogového, 
pak představuje vzorky původního analogového prototypu. Z hlediska vodorovné osy, času, jde tedy 
o vzorky, vniklé procesem vzorkování. Vzorkování je tedy procesem, kterým z analogového signálu 
získáme jeho vzorky na časové ose. Tyto vzorky jsou definovány jen v určitých časových okamžicích 
a v běžných případech (ale ne ve všech) jsou podél časové osy rozprostřeny pravidelně. O 
periodických signálech píši v kapitole 2.3.2. Odtud víme, že jedním z parametrů těchto signálů je 
opakovací perioda 0T  či opakovací kmitočet 0F . U číslicových signálů, vzniklých vzorkováním 

analogových signálů, je jedním z nejdůležitějších parametrů vzorkovací perioda vzT  nebo vzorkovací 

kmitočet vzF . Vzorkovací perioda je doba mezi jednotlivými vzorky, tedy vzdálenost mezi nimi 

v sekundách [s]. Převrácená hodnota vzorkovací periody je vzorkovacím kmitočtem v jednotkách 
Hertz (Hz = s-1). Tyto základní pojmy jsou ilustrovány na obr.3.6. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Obr.3.6. K pojmům vzorkovací perioda a vzorkovací kmitočet. 
 

Symboly Tvz a Fvz na obr.3.6 označují vzorkovací periodu a vzorkovací kmitočet číslicových vzorků. 

Jde tedy o parametry, vztahující se k vlastním vzorkům. Symbolem 0T  je v grafech označena perioda 

původního analogového periodického signálu, tedy spojité obálky. Pokud znáte vzorkovací periodu, 
tedy vzdálenost vzorků a počet vzorků v rámci periody původního analogového signálu, snadno 
vypočtete jeho původní periodu 0T . A naopak, je-li známa původní perioda 0T , pak na základě 

znalosti Tvz nebo Fvz lze vypočítat počet vzorků v rámci jedné periody původního analogového signálu. 

 msTvz 6283,0

 Hz
T

F
vz

vz 15921


 msT 283,60 

 msTvz 3142,0

 Hz
T

F
vz

vz 31831


 msT 283,60 
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Jinými slovy, namísto toho, abychom definovali tři parametry, tedy Tvz , počet vzorků a 0T , lze 

definovat pouze dva a ten třetí dopočítat, bude-li to potřeba. Při práci se signály se velmi často 

používá poměr  
0F
F

T
T vz

vz

, symbolem 0F  označujeme opakovací kmitočet analogového 

periodického signálu a platí  Hz
T

F
0

0
1

 . V teorii jsou definovány a užívány také normované 

veličiny, kdy platí:  
vzF
FF 0  a  

vzT
TT 0 . V případě obr.3.6 lze u prvního grafu vypočítat: 

  



10
6283,0
283,6

10.6283,0
10.283,6

3

3
0

vzT
T

, u druhého grafu   



20
3142,0
283,6

10.3142,0
10.283,6

3

3
0

vzT
T

. Čísla 

10 a 20 jsou tedy počty vzorků v rámci jedné periody původního analogového signálu (obálky). 

Výhodou je, že znáte-li uvedené poměry  
vzT
T0 , pak při zadání Tvz lze ihned dopočítat 0T  a naopak. 

Ukažme si to v následujících příkladech.  
 
 

Příklad 3.1. 
 

Periodický analogový signál byl převodníkem ADC převeden do číslicové podoby a načten do 
souboru na pevném disku počítače. Bylo zjištěno, že počet vzorků v rámci jedné periody analogového 
signálu byl 100. Jaký byl použitý vzorkovací kmitočet a vzorkovací perioda, byl-li kmitočet 

analogového signálu .4000 HzF   

 

Řešení:   kHzFFFF
F
F

vzvzvz
vz 40,400.100,.100100 0
0

  

 

 sTTT
F

T vzvzvz
vz

vz 25,10.25,
10.40
1,1 6

3    

 
 Poznámka: vzorkovací kmitočet je dán použitým převodníkem ADC. Někdy má uživatel 

 možnost jej měnit, jindy je pevně vázán na daný typ převodníku či zařízení. 
 
 

Příklad 3.2. 
 

U signálu z příkladu 3.1 potřebujeme zajistit, aby v rámci jedné periody analogového signálu byl 
dvojnásobně vyšší počet vzorků. Jaký vzorkovací kmitočet je potřebné zvolit? 

 

Řešení:   kHzFFFF
F
F

vzvzvz
vz 80,400.200,.200200
0

  

Poučení: je jistě zřejmé, že zvýšení vzorkovacího kmitočtu na dvojnásobek způsobí 
 dvojnásobný nárůst počtu vzorků v rámci jedné periody analogového signálu. 
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3.1.2.2 Diskrétní čas 

Podívejme se ještě jednou na obr.3.2 a obr.3.3. Na vodorovné ose 2D grafu mohou být tři veličiny. 
Jde o prosté pořadí vzorků n , spojitý čas t  (continuous-time) a tzv. diskrétní čas vznT  (discrete-

time), viz obr.3.7. Rozdíl mezi spojitým a diskrétním časem je zřejmý. Spojitý čas je spojitou veličinou, 
je tedy definován v každém bodě sledovaného časového intervalu. Diskrétní čas je definován pouze 
v okamžicích vzorků. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obr.3.7. Různé veličiny na vodorovné ose grafu u vzorkovaných signálů, 
 a) pořadí vzorků, b) spojitý čas, c) diskrétní čas. 
 
Je zřejmé, že pokud bude potřeba mít na vodorovné ose čas, bude třeba informaci o něm někde 

získat. Např. u souborů zvukového formátu *.wav, používaném v operačním systému Windows, je 

kromě vlastních zvukových vzorků přítomna informace o vzorkovacím kmitočtu vzF . Bez toho by 

nebylo zřejmé, s jakou četností byla data získána, a nebylo by možné je stejnou rychlostí přehrát, viz 
např. příklad 5.5 v kapitole 5.3.2.5. Čísla bez dalších informací jsou pouhými čísly. 

 

4.4.1 Generování harmonických signálů 

Harmonickým signálem označujeme signál, jehož časový průběh lze popsat (modelovat) funkcemi 
sinus nebo kosinus, viz kapitoly 2.2.2, 2.3.2 a 2.3.3. Harmonický signál je zcela definován třemi 
parametry, kterými jsou amplituda Sm, perioda T0 a počáteční fáze , viz obr.4.38. 

n [-] 0 1 2 3 4 5 6 7 8 9 10 

t [s] 0 10 20 30 40 50 nTvz [s] 0 Tvz 2Tvz ..... 10Tvz 

Tvz 

a) 

b) c) 
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Obr.4.38. Časový průběh harmonického signálu a jeho parametry, 
 a) na vodorovné ose je čas t, 
 b) na vodorovné ose je t (Sm a T0 beze změny). 
 

4.4.1.1 Práce s příkazy „sin“ a „cos“ 

Vytvořit „obyčejný“ harmonický signál lze velmi jednoduše použitím funkcí jádra MATLAB sin a 
cos. Připomeňme, že tyto funkce patří mezi tzv. elementární matematické funkce, jejichž přehled lze 
obdržet např. pomocí help elfun a jejichž syntaxe použití je velmi jednoduchá, viz help sin a help cos. 
Funkce sin a cos mohou mít jako vstupní parametr buďto jedno číslo (skalár) nebo vektor čísel 
a dokonce matici. Kolik čísel vložíme jako vstupní parametr, tolik jich obdržíme zpět. Na obr.4.39 jsou 
ukázány dva příklady tvorby signálu harmonického průběhu. Při použití příkazu stem je zdůrazněn 
diskrétní charakter signálu. Oba harmonické signály mají stejné parametry, tedy amplitudu 2.5V, 
kmitočet 1000 Hz a počáteční fázi pi/4 [rad]. Jsou vykresleny dvě periody. 
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Obr.4.39. Generování harmonických signálů. 
 

4.4.1.2 Harmonický signál s proměnným kmitočtem 

Kmitočet harmonického signálu se bude měnit v mezích a metodou, stanovenými uživatelem. 
Změna kmitočtu může být lineární, kvadratická nebo logaritmická, viz obr.4.40. Klíčovým příkazem je 
příkaz chirp. V prvním příkladu na obr.4.40  jsou jako jeho parametry zadány vektor časové osy t, 
počáteční kmitočet 0 Hz, cílový čas 1 s, při němž bude kmitočet 2 Hz. Nebudou-li definovány žádné 
další parametry, bude změna kmitočtu od 0 Hz do 2 Hz lineární. Ve druhém příkladu je díky 
parametru ‘quadratic’ změna kmitočtů v uvedených mezích kvadratická. Při volbě ‘logarithmic’ půjde 
o logaritmickou změnu. 
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Obr.4.40. Generování harmonických signálů s proměnným kmitočtem příkazem chirp. 
 

4.4.1.3 Napěťově řízený oscilátor (vco) 

Podstatou je generování harmonického signálu, jehož okamžitý kmitočet závisí na okamžité 
hodnotě jistého vektoru. Termíny „napěťově řízený oscilátor“ (voltage controlled oscillator - vco) jsou 
zvoleny z praxe, kde oscilátor (generátor harmonického signálu) je často řízen veličinou, jejímž 
fyzikálním významem je elektrické napětí. Jde však o již tak všeobecně vžitý a uznávaný název 
(termín), že se běžně používá. Z hlediska MATLAB by se také dalo napsat, že jde o oscilátor 
s kmitočtem řízeným hodnotou. 

Klíčovým příkazem je příkaz vco. Mezi jeho hlavní parametry patří vektor hodnot, které řídí 
kmitočet harmonického signálu, označme jej x, referenční (nosný) kmitočet fc a vzorkovací kmitočet 
fs. Pro vysvětlení principu si představte, že vidíte dva průběhy dat. Jeden náleží vektoru řídicích 
hodnot x a druhý výstupu příkazu vco. Oba průběhy plynou současně. Podle okamžité hodnoty 
vektoru x je nastaven kmitočet výstupu. Změní-li se hodnota vektoru x, okamžitě se změní kmitočet 
výstupního harmonického signálu. N obr.4.41 je ukázán princip řízení. 
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Obr.4.41. Základní princip použití příkazu vco. 
 

Je definován vektor x ze samých nul o délce 1000 prvků. Poté je polovině prvků vektoru přiřazena 
hodnota -0.8, druhé polovině hodnota 0.8. Příkaz vco obsahuje jako své parametry vektor x, dále 
kmitočet referenčního signálu 2 Hz a kmitočet vzorkovacího signálu 90 Hz. Na obrázku, získaném 
příkazem plot, je vidět vlastní řízení kmitočtu. Do poloviny je kmitočet řízen číslem -0.8, od poloviny 
číslem 0.8. Jde tedy o dva rozdílné kmitočty. Jaká je jejich hodnota? Rozsah použitelných hodnot 

vektoru x je 1,1x . Pro hodnotu -1 je kmitočet na výstupu roven 0 Hz, pro hodnotu 0 je 

kmitočet roven kmitočtu referenčního signálu (tedy 2 Hz) a pro hodnotu 1 je kmitočet roven 
dvojnásobku kmitočtu referenčního signálu. Je zřejmé, že mezi hodnotami -1 a 1 budou kmitočty 
úměrné konkrétní hodnotě. Je např. možné definovat řídicí vektor x jako harmonický signál. Potom se 
bude kmitočet na výstupu měnit harmonicky. Příkazu vco se využívá např. při tvorbě některých typů 
modulovaných signálů. Pro další možnosti viz help. 

  

5.2.2 Globální a další charakteristiky signálů 

Globální charakteristiky charakterizují číslicový signál podrobněji a poskytují další cenné informace 
o něm. Jejich vlastností je, že k jejich výpočtu je třeba zpravidla pracovat se všemi vzorky a navíc 
některé z nich mají integrální charakter, tedy určují vlastnosti signálu jako celku za určitý časový 
interval, resp. interval veličiny nezávisle proměnné. Zajímají nás zejména tyto charakteristiky: 

 
 mohutnost, 
 střední hodnota, 
 směrodatná odchylka, 
 medián, 
 okamžitý výkon, 
 činný výkon (střední výkon, výkon signálu), 
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 efektivní hodnota, 
 energie signálu, 
 vzájemná energie dvou signálů, 
 derivace, 
 integrál. 

 
Následující části kapitoly uvádějí vždy stručně teoretické zázemí a na příkladech výpočty 

jednotlivých globálních a dalších charakteristik. 
 

Poznámka: protože chápeme a priori všechny číslicové signály jako aperiodické, budeme je  
 v dalších částech analýzy v časové oblasti nazývat impulzy. 

 

5.2.2.1 Mohutnost impulzu 

V případě analogových signálů je mohutnost impulzu dána plochou, kterou vymezuje jeho grafický 
průběh v rámci doby trvání. Matematicky lze plochu spojité funkce, jíž je daný signál modelován, 
vypočítat určitým integrálem. V případě číslicových signálů je integrál nahrazen sumou (součtem). 
Pak můžeme naspat, že mohutnost je dána součtem hodnot všech vzorků impulzu, viz vztah (5.1). 

  





k

ksM . (5.1) 

Jednotkou mohutnosti je jednotka signálu, je-li k dispozici. Teoretické meze sumace  ,k  

se v případě praktických signálů mění na konkrétní počet vzorků. Na obr.5.5 je ilustrován výpočet 
mohutnosti, který je jistě velmi snadný. Číslicová data jsou získána načtením souboru recycle.wav ze 
složky Windows/Media. Jde o soubor zvukových dat, který slýcháte při vysypání koše v operačním 
systému Windows XP. Po načtení příkazem wavread je zjištěn rozměr proměnné data, která obsahuje 
vlastní vzorky zvukových dat a velikost vzorkovacího kmitočtu. Data jsou nahrána pouze monofonně, 
tedy jednokanálově. Pomocí sum je pak získán součet hodnot všech vzorků, tedy vlastní mohutnost 
M. Připomeňme, že získání součtu hodnot vzorků pomocí cyklu for v m-souboru je sice alternativou, 
avšak pro velkou časovou náročnost tohoto přístupu jej příliš nedoporučujeme. 
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Obr.5.5. Výpočet mohutnosti M číslicového aperiodického signálu. 
 

5.2.2.2 Střední hodnota 

Střední hodnota je v teorii analogových signálů definována jako průměrná hodnota signálu v rámci 
jeho jedné periody. Vztahuje se tedy historicky k periodickým signálům. My zde budeme tento termín 
chápat ve vztahu k signálům číslicovým a to stochastickým. Střední hodnota tedy bude jednou 
z charakteristik náhodné veličiny, viz kapitolu 4.4.10. Zde je konstatováno, že střední hodnota je 
teoreticky definována jako číslo, kolem kterého kolísají hodnoty výběrových průměrů, jež se počítají 
vždy ze série hodnot náhodné veličiny (mnoho realizací náhodného procesu). Tento fakt je vyjádřen 
rovnicí (4.1). Bude-li k dispozici číslicový signál pouze v jediné realizaci a navíc všechny funkční 
hodnoty náhodné veličiny (vzorky) budou mít stejnou pravděpodobnost, pak se celý problém 
redukuje do výpočtu běžného aritmetického průměru, který je vyjádřen vztahem (4.6), viz obr.5.6. 
Toto tvrzení by mělo být správně podloženo vědomím, že střední hodnota by měla být nezávislá na 
konkrétní realizaci, tedy že jde o ergodický náhodný proces. Pokud to není známo či zaručeno, vyjde 
nám výpočtem pouze více či méně přesný odhad střední hodnoty konkrétního signálu. Jednotkou 
střední hodnoty je jednotka signálu. 

 

 
 

Obr.5.6a. Výpočet střední hodnoty číslicového aperiodického signálu ve formě vektoru. 
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Obr.5.6b. Výpočet střední hodnoty číslicového aperiodického signálu ve formě matice; 
 je počítána střední hodnota jednotlivých sloupců matice. 
 
 

 
 

Obr.5.6c. Výpočet střední hodnoty číslicového aperiodického signálu ve formě matice; 
 je počítána střední hodnota jednotlivých řádků matice. 
 
Je-li příkaz mean aplikován na matici, pak vrací vektor čísel, jejichž významem je střední hodnota 

jednotlivých sloupců, resp. řádků. 
Jak jsem ukázal v kapitole 4.4.10, jsou pojmy jako střední hodnota, rozptyl apod. číselnými 

charakteristikami náhodné veličiny a zastupují tak mnohdy velmi pracné až nemožné získání rozložení 
hustoty pravděpodobnosti náhodné veličiny. Jinou možností je výpočet a kreslení histogramů, ze 
kterých je patrná i střední hodnota, nejlépe je-li histogram dostatečně „hustý“, tedy jsou-li intervaly 
datových hodnot na vodorovné ose dostatečně malé, viz obr.5.7 (názorné jen u některých rozdělení). 
Pak histogram již svým tvarem připomíná konkrétní rozložení, v našem případě normální. Konstanty 
S a R mají význam střední hodnoty a rozptylu. Není-li k dispozici jiná možnost, lze tedy střední 
hodnotu odhadovat i takto. Střední hodnota v histogramu signálu s Gaussovským rozdělením hustoty 
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pravděpodobnosti reprezentuje opravdu střed, tedy číslo 100 na vodorovné ose (největší 
pravděpodobnost výskytu). 

Terminologicky je střední hodnota někdy označována jako stejnosměrná hodnota či stejnosměrná 
složka signálu. Toto označení se používá např. v elektrotechnice z důvodů vyzdvižení polarity 
posunutí jinak v čase proměnného signálu. Jindy termínem pro stejnosměrný signál rozumíme signál 
konstantní, tedy v čase neproměnný. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Obr.5.7. Přibližný odhad střední hodnoty pomocí histogramu. 
 

5.2.2.3 Směrodatná odchylka 

Směrodatná odchylka (anglicky standard deviation) je matematicky odmocninou z rozptylu 
náhodné veličiny. Je definována vztahem (4.3), resp. (4.2). V MATLAB je dosažitelná díky funkci std, 
viz obr.5.8. 

 

 
 

Obr.5.8. Výpočet směrodatné odchylky pomocí příkazu std. 
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Platí podobné úvahy o ergodicitě, jako v případě střední hodnoty. Aplikován na matici vrací příkaz 
std vektor hodnot, jejichž významem je směrodatná odchylka dat ve sloupcích matice. Příkaz může 
mít ještě dva další parametry, viz help. Jednotkou směrodatné odchylky je jednotka signálu. 

 
 

5.2.2.4 Medián 

V kapitole 4.4.10 jsem se věnoval také termínu medián. Odtud víte, že medián je 50 %-ním 
kvantilem náhodné veličiny. Aplikujme postup zde uvedený v obr.5.9. Opět platí výše zmíněné úvahy 
o ergodicitě. 

 

 
 

Obr.5.9. Výpočet mediánu číslicového stochastického signálu. 
 

Komentář k výsledkům by byl analogický výpočtu střední hodnoty (aplikace na vektor a matici). 
 

5.2.2.5 Okamžitý výkon impulzu 

V teorii analogových signálů je okamžitý výkon dán kvadrátem funkce, kterou signál modelujeme. 
Analogicky v případě číslicových signálů půjde tedy o výpočet nového signálu, jehož vzorky budou mít 
velikost, danou kvadrátem těch původních. Výsledkem výpočtu tedy není jeden parametr-skalár, ale 
opět řada vzorků stejného počtu, jako původní signál. Platí tedy vztah: 
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Ilustrační výpočet je na obr.5.10. Jednotkou okamžitého výkonu je kvadrát jednotky signálu. 
Upozorněme, že při výpočtu je užito operátoru .^ , který zajistí výpočet kvadrátů hodnot jednotlivých 
vzorků. Bez použití tečky vrátí MATLAB chybové hlášení, neboť by šlo o maticové násobení, kteréžto 
předpokládá jistý rozměr obou matic, resp. vektorů. 

V literatuře je někdy okamžitý výkon doplněn přívlastkem normovaný, což souvisí s jeho 
historickou definicí, kdy je u analogových signálů v elektrotechnice předpokládáno jeho působení do 
odporové zátěže s jednotkovým (normovaným) odporem. 

 

 
 

Obr.5.10a. Výpočet okamžitého výkonu číslicového stochastického signálu ve formě vektoru. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Obr.5.10b. Průběhy signálu a jeho okamžitého výkonu. 
 

5.2.3 Výpočet konvoluce 

Algoritmy pro výpočet konvoluce dvou číslicových signálů tvoří důležitou součást DSP. Konvoluce 
se využívá dosti často a to přímo anebo jako součást rozsáhlejších výpočtů. Z hlediska fyzikální 
podstaty a porozumění ji zavedeme v následující části knihy spíše intuitivně s minimem matematiky. 
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5.2.3.1 Lineární diskrétní konvoluce 

Naším cílem je zavést pojem lineární diskrétní konvoluce spíše intuitivně. Abychom však toto 
mohli realizovat, nevyhneme se následujícímu popisu číslicového signálu. Číslicový signál je 
posloupností čísel - vzorků. V pořadí první číslo dané posloupnosti je možné vyjádřit samostatně 
pomocí diskrétního jednotkového impulzu, viz kapitola 4.4.3. Bude-li hodnota tohoto čísla různá od 
jedničky, pak bude muset být diskrétní jednotkový impulz násoben tímto číslem, neboť jeho hodnota 
je rovna 1. V pořadí druhé číslo posloupnosti, tedy o jeden krok zpožděné, lze opět vyjádřit 
diskrétním jednotkovým impulzem. Ten bude taktéž vynásoben hodnotou druhého čísla posloupnosti 
a navíc zpožděn (posunut) o jeden krok-pořadové číslo. Tento postup, tedy náhradu či popis každého 
čísla signálu diskrétním jednotkovým impulzem, s hodnotou vynásobenou tímto číslem a příslušně 
posunutým, provedeme myšlenkově pro každé číslo posloupnosti. Sečteme-li poté všechny 
vynásobené a posunuté diskrétní jednotkové impulzy, dostaneme původní posloupnost čísel. 
Uvedený postup dokumentuje obr.5.20. 
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Obr.5.20. Číslicový signál jako suma vážených posunutých diskrétních jednotkových impulzů, 

 a) diskrétní jednotkový impulz n  a jeho využití k popisu jednotlivých vzorků (čísel), 

 b) konkrétní číslicový signál ny , vyjádřený pomocí diskrétních jednotkových impulzů. 

 
Násobení diskrétních jednotkových impulzů hodnotami čísel posloupnosti nazýváme často 

vážením (násobení vahou-hodnotou prvků posloupnosti). Vyjádříme-li tedy libovolný číslicový signál 
výše uvedeným postupem, říkáme, že daný signál byl vyjádřen součtem (sumou) vážených 
posunutých diskrétních jednotkových impulzů. Výše uvedený postup využijeme v následujících 
partiích. 

 
Uvažujte nyní libovolný číslicový systém (soustavu). Tímto systémem je v praxi vždy nějaký 

algoritmus, tedy postup, při němž je ze vstupní posloupnosti čísel vytvořena posloupnost výstupní 
bez ohledu na konkrétní fyzickou realizaci (implementaci). Nechť je daný číslicový systém lineární, 
tedy hodnoty vzorků na výstupu jsou v přímé úměře k hodnotám vstupu (zjednodušeně). Na takový 

a) 

b) 
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číslicový systém přicházejí postupně vzorky (čísla) vstupní posloupnosti nx  a na jeho výstupu se 

objevují vzorky odezvy ny . Zamysleme se nad možností vypočítat vzorky výstupní posloupnosti, 

budou-li známy vzorky posloupnosti vstupní a příslušné parametry onoho číslicového systému. Jde 
tedy o výpočet odezvy lineárního číslicového systému (algoritmu) na vstupní budicí posloupnost. 

Důležitým termínem v této souvislosti je impulzní odezva lineárního číslicového systému. Impulzní 
odezva nh  je odezvou systému v případě, kdy na vstupu působí pouze jednotkový impulz n . Je-li 

systém buzen vzorkem (číslem) s jinou hodnotou, než 1 a navíc posunutým na vodorovné ose (často 
v čase), pak na výstupu bude posloupnost vzorků, které tvarově odpovídají impulzní odezvě, ale 
všechny její vzorky jsou násobeny (váženy) hodnotou vstupního vzorku a celá impulzní odezva bude 
posunuta stejně, jako budicí vzorek, viz obr.5.21. Pro usnadnění předpokládejme, že počet 
nenulových vzorků impulzní odezvy je 4 s pořadovými čísly (indexy) na vodorovné ose 0 až 3. 
Všimněte si, že vlivem posunutí budicího vzorku nx  ve druhém případě dojde také k posunutí vážené 

impulzní odezvy, tedy k celkovému prodloužení počtu vzorků na výstupu. Poznamenejme, že 
jednotkou vzorků výstupní posloupnosti se nezabýváme, neboť tuto nelze stanovit obecně 
jednoznačně (může být různá podle konkrétní fyzikální povahy vzorků, chápané uživatelem). 
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Obr.5.21. Odezva lineárního číslicového systému na jednotkový impulz a na obecný vstupní vzorek. 

 
Bude zajímavé nyní sledovat, jaká bude odezva v případě, kdy na vstupu systému budou působit 

oba vstupní vzorky z obr.5.21, tedy když bude vstupní posloupnost sestávat z obou vzorků, viz 
obr.5.22. 
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hn

 
Obr.5.22. Odezva lineárního číslicového systému na obecnou vstupní posloupnost. 
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Dokázat vypočítat výstupní posloupnost ny  z obr.5.22 lze několika způsoby. Jak jsem naznačil 

výše, jde o lineární systém. V lineárních případech vždy platí tzv. princip superpozice. Ten nám říká, že 
působí-li na vstup lineárního systému součet více budicích podnětů (vzorků, zdrojů apod.), pak lze 
odezvu získat jako součet dílčích odezev na ony podněty, působící samostatně. Jednoduše napsáno, 
tahají-li dva siláci za lano, je celková síla daná součtem sil, působí-li každý zvlášť. Podle tohoto 
principu je jasné, že k výpočtu odezvy na vstupní posloupnost podle obr.5.22 stačí sečíst dílčí odezvy 

ny  z obr.5.21, kdy působí každý vzorek samostatně. Sečtení je možné provést buďto graficky nebo 

číselně. Budeme-li sčítat dílčí odezvy z obr.5.21, pak můžeme psát: 

   125,075,075,175,15,0125,005,025,075,0125,05,105,0 ny . 

Uvedený, intuitivně zavedený způsob výpočtu celkové odezvy na libovolnou vstupní posloupnost 
lze aplikovat obecně. V tom případě lze zapsat algoritmus výpočtu v podobě sumy podle vztahu (5.8). 

 



n

m
mnmn hxy

0
.  (5.8) 

Vztah (5.8) umožňuje vypočítat hodnoty vzorků výstupní posloupnosti lineárního číslicového 

systému, jsou-li známy vstupní posloupnost nx  a impulzní odezva systému nh . Pokusme se nyní 

vztah (5.8) aplikovat a vypočítat analyticky hodnoty vzorků výstupu podle obr.5.22. Výpočet je 
uveden jako obr.5.23. 
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Obr.5.23. Aplikace vztahu (5.8) k výpočtu vzorků výstupní posloupnosti z obr.5.22. 

 
Podívejme se nyní na počet vzorků výstupní posloupnosti, výše počítané. Počet nenulových 

vstupních vzorků z obr.5.22 je 2xN , délka impulzní odezvy na obr.5.21 je 4hN  a délka výstupní 

počet členů výstupní posloupnosti (indexy 
0-4) 

výchozí vztah pro lineární diskrétní 
konvoluci 
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posloupnosti pak 5yN . Z toho plyne jednoduchý vztah pro počet vzorků výstupní posloupnosti: 

1 hxy NNN , použitý v obr.5.23. Vztah (5.8) je často nazýván lineární diskrétní konvolucí. 

Prozatím jsme se nezamýšleli nad termínem konvoluce. Bude diskutován níže v kapitole o spektrální 
analýze v souvislosti s větou o součinu obrazů, viz kapitola 5.3. 

 
Výpočet lineární diskrétní konvoluce v MATLAB je snadný díky intuitivnímu příkazu conv, viz 

obr.5.24. Jako své parametry potřebuje příkaz conv vektory dvou posloupností obecně různé délky. Je 
zajímavé, že pořadí obou vektorů lze zaměnit. 

 

 
 

 
 

Obr.5.24. Výpočet lineární diskrétní konvoluce v systému MATLAB, srovnejte s obr.5.22 a obr.5.23. 
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Příklad 5.2 
 
Vypočtěte prvních 11 složek amplitudového a fázového spektra periodického obdélníkového 
signálu podle obr.5.57. 

 
 
 
 
 
 
 
 
 

Obr.5.57. Časový průběh periodického signálu z příkladu 5.2. 
  
Řešení: vyjdeme ze vztahu v tab.5.2 pro výpočet komplexních spektrálních koeficientů: 
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 Výsledek lze upravit do často používané funkce  

 csinsin
 , neboť její průběh je 

 dobře znám a umožňuje snadné vyhodnocení výsledku. 
 

 .
2

sin.

2

2
sin

.
2

sin.2
0

0
0

0

0
0

0







 









 







 


 ii

m
i

i

i
m

im
k

tkc
T
tPtk

tk

T
tPtk

Tk
Pc   

 
 Podle posledního vztahu lze již určovat amplitudy a fáze jednotlivých harmonických  

podle Eulerovy věty platí 
j
ee jj

2
sin








rozšíření výrazem 
i

i

t
t  

t [ms]

p(t)

Pm

ti
T0

mst
msT
PaP

i

m

1
5
1

0







 27 

složek. Ještě než toto uvedeme, je třeba vypočítat parametry první spektrální složky, 
tedy konstanty, jejíž význam je střední hodnota časového průběhu. Tuto konstantu 
nemůžeme jednoduše vypočítat z odvozeného vztahu dosazením za 0k , neboť 

bychom obdrželi neurčitý výraz 
0
0

. Z teorie však je známo, že střední hodnotu lze 

vypočítat následovně: 

    Pa
T
tPdtP

T
dttp

T
P i

m

t

t
m

T

i

i 0

2

2
00

0 .1..1

0

 


 

 Výsledky odvození můžeme již shrnout: 
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 Podle rovnice (5.23) lze již jednoduše vypočítat konkrétní hodnoty spektrálních složek.  
 Jednotky vždy odpovídají jednotkám zadané veličiny, v našem případě Pa. 
 Vztah (5.23) lze konkretizovat dosazením zadaných číselných hodnot takto: 
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2,0sin.2,02,0sin.2,0 00  cPcP
k
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
   

 
 
 

 Dosazováním za 10,...,3,2,1k  vypočteme potřebné hodnoty, viz tabulka tab.5.3. 

  
 Tab.5.3. Konkrétní vypočtené hodnoty spektrálních čar průběhu na obr.5.57. 

k  Pack   Pack   PaPk   radk  

0  0,2  0,2  0,2  0 
1  0,1871  0,1871  0,3742  0 
2  0,1514  0,1514  0,3027  0 
3  0,1009  0,1009  0,2018  0 
4  0,0468  0,0468  0,0935  0 
5  0  0  0  x 
6  -0,03118  -0,03118  -0,06237  π 
7  -0,04325  -0,04325  -0,08649  π 
8  -0,03784  -0,03784  -0,07568  π 
9  -0,02079  -0,02079  -0,04158  π 

10  0  0  0  x 
 
 Spektrální koeficienty kc  nám posloužily jako výchozí hodnoty pro výpočet cílových  

 parametrů harmonických složek spektra kP .  

spektrální koeficienty kc  harmonické složky spektra 
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 Spektrální koeficienty kc  jsou obecně funkcemi komplexní proměnné a lze je psát ve  

 tvaru kj
kk ecc . , kde 

k

k
k c

ctg




Re
Im

 . V našem konkrétním příkladu však vyšly 

 koeficienty jako reálná čísla, tedy platí: 00Im  kk ctgc  . Z toho plynou hodnoty 

 fázového spektra 0  nebo  . V obou případech je tangens roven nule, avšak je třeba 
 zohlednit fakt, že fázové spektrum je lichou funkcí (důkaz přesahuje záměr kapitoly). 

 
 Poznámka: budete-li spektrální koeficienty a harmonické složky počítat za pomocí kalkulačky,  
  přepněte ji do režimu rad. V případě výpočtů za pomoci počítače vhodným software  
  bývá toto často zajištěno automaticky (implicitně). 

Časový průběh a průběhy obou spekter jsou uvedeny na obr.5.58. 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obr.5.58. Výsledná podoba spektra signálu z příkladu 5.2. 
 

Je zajímavé, že v případě obdélníkových pulzů nabývá obálka amplitudového spektra v jistých 
bodech nulových hodnot. Tyto body na vodorovné ose, tedy ose kmitočtu, souvisejí se šířkou pulzu. 
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hodnotu 
0

..2
T
tP i

m , v příkladu 5.2 vychází konkrétně Pa4,0 . První čára, tedy střední hodnota 

(matematicky váha), je vždy poloviční. S těmito shrnutími lze spektrum nakreslit velmi snadno pro 
libovolné parametry časového průběhu. Na obr.5.59 je ilustrace k praktickému měření spekter 
pomocí spektrálního analyzátoru. 

 

   
 

Obr.5.59. Časový průběh a amplitudové spektrum reálného obdélníkového signálu. 
Jak je naším zvykem na stránkách knihy, doporučujeme v případě potřeby prostudovat další 

hodnotné prameny, např. [2], [6] nebo [10]. Dobrým místem pro poučení mohou být také vhodné 
internetové stránky. 

 
 Spektrum neharmonických periodických signálů - dílčí shrnutí: 
 každý periodický signál, splňující jisté matematické podmínky, lze vyjádřit ve formě 
 nekonečné řady harmonických funkcí; tuto řadu nazýváme Fourierovou řadou*, 
 Fourierova řada má tři tvary a každý tvar obsahuje jiný tvar koeficientů, 
 určit spektrum znamená analyticky vypočítat koeficienty Fourierovy řady, tedy provést 
 integraci, 
 spektrum periodických signálů je čarové (diskrétní); vzdálenost mezi čarami je vždy rovna 
 kmitočtu časového průběhu, 
 výpočet koeficientů a harmonických složek spektra vyžaduje znalost funkčního vztahu 
 pro zadaný časový průběh; pokud tento vztah není znám, nelze spektrum uvedeným  
 způsobem počítat, 
 aby mohl být periodický neharmonický signál podroben spektrální analýze, musí splňovat 
 tzv. Dirichletovy podmínky, 
 při odvozování vztahů pro koeficienty je třeba jisté zkušenosti, aby byly výsledky  
 snadno interpretovatelné; naštěstí pro mnoho časových průběhů jsou již koeficienty 
 odvozeny,  
 v případě obdélníkových pulzů lze spektrum nakreslit snadno se znalostí několika údajů, 
 takto pojaté spektrum je teoreticky správné a budeme se k němu odkazovat při zavádění 
 spektrální analýzy diskrétních, resp. číslicových signálů. 

 
 *Jean-Baptiste Joseph de Fourier (1768-1830) – proslulý holandský matematik a fyzik. Kolem 

 roku 1822 formuloval ve své práci „Analytická teorie tepla“ základy Fourierovy metody řešení 
 parciálních diferenciálních rovnic. Jeho trigonometrické řady funkcí dnes využíváme, mimo jiné, 
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 k vyjádření, popř. k aproximaci, periodických funkcí a spektrální analýze. Taktéž Fourierův 
 integrál (5.24) je Fourierovým objevem. Jeho životní osudy jsou velmi zajímavé a inspirativní. 

 
  

Příklad 5.7 
 

 Tento příklad je zařazen pro demonstraci spektrální analýzy s využitím tzv. diskrétní Fourierovy 
 transformační matice. Připomeňme, že případ byl již naznačen v poznámce kapitoly 5.3.2.2. Na 
 obr.5.78  je ukázán výpočet komplexních koeficientů a zobrazeno amplitudové spektrum 
 číslicového signálu dvojím postupem. První je klasický, v předchozích příkladech užívaný 
 způsob, využívající funkce vnitřní fft. Ve druhém případě půjde o využití zmíněné transformační 
 matice. Cílem je ukázat, že výsledky se neliší. 

 

 
 

 
 

Obr.5.78. Spektrální analýza číslicového signálu s využitím Fourierovy transformační matice. 
 

 Jak je zřejmé z obr.5.78, platí při práci s transformační maticí vztah sAS . , kde s je původní 
 vektor s číslicovými vzorky a S je vektor komplexních koeficientů jeho spektra. 
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 Další používané varianty příkazu fft: 
 
  pomocí fftshift namísto fft dojde k tomu, že první složka spektra bude zobrazena ve středu, 
  při práci s dvou a vícerozměrnými signály je třeba použít příkazy fft2, resp. fftn, kde n je  

  rozměr, 
  je-li příkaz fft aplikován na matici, provede výpočet komplexního spektra pro každý sloupec. 
 

5.4 Časově - frekvenční analýza 

Klasická spektrální analýza signálů ve Fourierově smyslu předpokládá jeden důležitý předpoklad. 
Signál, který analyzujeme, se v průběhu analýzy z hlediska frekvenčního obsahu nemění. Jinak 
napsáno, vždy při výpočtech spekter uvažujeme celý signál. V praxi však existuje řada případů, kdy je 
délka signálu neúměrně dlouhá či v principu nekonečná nebo jde o signál s parametry proměnnými 
v čase (nestacionární signál). Představte si např. situaci, že je třeba počítat spektra signálů z nějakého 
snímače, jenž snímá mechanické napětí nosníku mostu při průjezdu vozidel. Situace vás povede 
k tomu, že připojíte záznamové zařízení na výstup snímače a zaznamenáte např. 24 hodin záznamu. 
Nebo budete mít k dispozici data ze snímače signálů EKG či EEK či záznam koncertu na nosiči CD. 
Takové signály jsou velmi dlouhé na to, aby byl proveden výpočet DFT (FFT) z celého záznamu. 
Vzhledem k ohromnému počtu vzorků by výpočet trval mnoho hodin, desítek hodin nebo i dnů; o 
výpočtu v reálném čase pak nemá smyslu uvažovat vůbec. Mimoto, některé signály ani celé 
k dispozici nemáme, neboť jsou v principu nekonečné (snímač mostu poskytuje data nepřetržitě). A 
nakonec ještě jedno omezení klasické Fourierovy spektrální analýzy. Fourierova analýza vede na 
kmitočtové spektrum, kdy na ose nezávisle proměnné je kmitočet jednotlivých složek spektra 
(analogie s duhou). Ale co když vás bude zajímat, jak se jednotlivé spektrální složky mění v čase? To je 
typické např. v oblasti rozpoznání řečového signálu, kdy nás může zajímat časový vývoj některých 
typických složek pro jednotlivé hlásky apod. To však klasická Fourierova analýza v principu nedokáže, 
neboť analyzuje signál jako celek. 

Ze všech výše uvedených důvodů, tedy přílišné délky signálu či potřebě znalosti časových změn 
spektrálních složek, je třeba provádět spektrální analýzu jiným způsobem. Máme k dispozici 
v principu dvě možnosti. Buďto využijeme výpočet spektra v jiném, než Fourierově smyslu, anebo 
Fourierovu analýzu použijeme, ale rozdělíme originální signál na úseky konečné délky a nad každým 
úsekem provedeme námi probíranou analýzu s využitím FFT. Získáme tím časově řazená spektra 
dílčích úseků (krátkodobá spektra), z nichž můžeme usuzovat na jistý, časově podmíněný vývoj 
spektra. Na rozdíl od kapitoly 5.3.3 však neprovádíme průměrování, ale snažíme se zachytit časový 
vývoj spektrálních složek. 

Analyzovaný číslicový, pro naše účely velmi dlouhý signál, je rozdělen na dílčí úseky. Nad každým 
je provedena DFT standardně pomocí FFT algoritmu. V rámci zvýšení rozlišení ve spektru a zachování 
návaznosti mezi úseky jsou úseky voleny co nejdelší a navíc s určitým přesahem, viz obr.5.87. 
Mimoto, je možné provést analýzu několikrát a pokaždé vybrat jinou délku signálů (oken) tak, aby 
bylo možné ještě zvýšit rozlišení ve spektrální oblasti (podrobnější analýza). Podrobnosti uvádět 
nebudeme, neboť je třeba vyřešit řad dílčích problémů, např. spojených s redukcí objemu dat.  

Je-li požadavek či potřeba vypočítat takové spektrum, pak výsledek bývá zobrazen ve formě tzv. 
spektrogramu. Spektrogram je 3D graf, který má dvě osy nezávisle proměnné a to kmitočet a čas 
(pořadí spekter úseků). Jak je vidět z obr.5.87, jde o krátkodobá spektra jednotlivých úseků signálu 
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řazena za sebou. Tato krátkodobá spektra jsou na obrázku naznačena jako spojitá obálka z důvodů 
přehlednosti, jinak jde samozřejmě o vzorky. Na svislé ose bývá často amplitudové spektrum dané 
veličiny nebo výkonové spektrum. 

Spektrogram bývá často zobrazován jako 2D graf s tím, že jde o pohled shora na původní graf 3D. 
Velikosti jednotlivých spektrálních čar jsou pak rozlišeny v reálu barevně, viz ilustrace na obr.5.87. 
Příkaz specgram má řadu parametrů, minimálně jde o vlastní data a dále dvě čísla, udávající délku 
úseků, resp. počet bodů algoritmu FFT (zde 256) a vzorkovací kmitočet. Překrytí úseků (overlap) je 
implicitně voleno jako polovina jejich délky. Úseky jsou ze signálu vybírány implicitně pomocí 
Hammingova okna zadané délky, viz příklad 5.9. Uživatel má možnost tyto a další parametry ovlivnit 
podle povahy řešené úlohy. 

 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Obr.5.87. Ilustrace k rozdělení dlouhého signálu na úseky a pojmu spektrogram. 
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Obr.5.88. Základní tvorba spektrogramu číslicového signálu. 

 
Pro účely výuky či podrobnějšího seznámení se s pojmem spektrogram nabízí MATLAB interaktivní 

demonstrační systém. Můžete jej spustit několika způsoby. Buďto příkazem specgramdemo 
z hlavního okna nebo z nabídky Start/Demos  a v zobrazeném okně interaktivního helpu vybrat 
Toolboxes/Signal Processing/Spectral analysis and ... /Spectrogram Demo. Zobrazí se okno podle 
obr.5.89 v reálu pěkně v barvách. Pak lze myší pohybovat kurzorem a sledovat souřadnice, měnit 
měřítko (zoom), počet bodů algoritmu FFT (délka okna), překrytí úseků apod. 

 

 
 

Obr.5.89. Interaktivní demonstrační systém pro práci se spektrogramy. 
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