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2.1.3 Vzájemný vztah systémů a signálů 
V kapitole 2.1.2 jsem zmínil jednu důležitou souvislost, vztahující se k pojmu systém. Jde o 

vzájemný vztah systémů a signálů. Tento vztah hraje v teorii i praxi velmi důležitou roli. Jak jsem 
uvedl výše, vzájemné svázání systému se signály je neodlučitelné a je typické pro všechny obory 
lidské činnosti. 

 
2.1.3.1 Určování stavu systémů pozorováním signálů 

Stav systému může být určen pouze pozorováním, resp. měřením vybraných signálů. Jde např. o 
určení barvy vozidla, jeho hmotnosti, rychlosti, zrychlení, spotřeby, teploty kapalin, výšky stromu, 
zralosti jablka apod. Pro učení těchto parametrů systému je třeba znát vybrané signály, tedy fyzikální 
veličiny, jež nám přinášení o daném parametru zprávu, resp. informaci. Tyto signály mohou být různé 
povahy; v současné době však převažuje snaha převádět je ve finální podobě na elektrické signály pro 
jejich snadnou archivaci, následnou analýzu, přenos apod. K tomu je třeba převodníků signálů 
optických, mechanických, chemických aj. právě na elektrické. My lidé vyhodnocujeme systémy 
prostřednictvím našich pěti smyslů. Mozek pak ve spolupráci s dalšími systémy našeho organizmu 
může provádět jejich vyhodnocování, uchování apod. s následnou reakcí. Pro rozšíření možností je 
pak třeba příslušných měřicích přístrojů, opět svého druhu systémů. Tak parametry jednoho systému 
vyhodnocujeme díky vhodným signálům opět za pomoci jiných systémů. Takové analýze jsme učeni 
od útlého dětství, kdy měříme délku úsečky pravítkem, měříme poloměr s následným výpočtem 
obvodu kružnice, vážíme ve školní laboratoři na speciálních vahách, sami jsme po celý život měřeni a 
váženi atd. Opět jde o ukázku těsného spojení dvojice systém – signál. Zkrátka signály nám slouží ke 
zjištění určitých parametrů systému, k určení jeho stavu. Zajímavou otázkou je přesnost takového 
určování parametrů. Z praxe známe určování od orientačního pozorování až po vysoce přesná měření. 
Kromě samotných údajů (dat) jde zde také o určení možných chyb při měření a tzv. nepřesností 
(správně nejistot) při měření, kterými se zabývá metrologie. Na internetu se můžete inspirovat např. 
na serveru encyklopedie www.wikipedia.cz, kde naleznete řadu zajímavých odkazů pod termíny 
metrologie, měřicí přístroj apod. Na obr.2.2 je ilustrační příklad měření, tedy zjišťování parametru 
nějakého systému. 

 

 
 

Obr.2.2. Ilustrační příklad reálných měření a záznamu signálů seismografem. 
 



 

2.1.3.2 Systémy jako zdroje signálů 

Systémy poznáváme díky pozorování, resp. měření příslušných signálů. To je do jisté míry pasivní 
přístup. Mnohdy ale konstruujeme systémy právě s cílem generování potřebných signálů. Takový 
generátor může mít povahu elektrickou (generované signály jsou elektrickými veličinami), ale také 
optickou (laserová dioda pro optický kabel, světlo pro signalizaci mezi loděmi), mechanickou (vibrace 
pro účely zkoušek), chemickou či jinou. Přitom jsou někdy různé druhy signálů mezi sebou 
transformovány např. z elektrického na mechanický či optický. Účelem konstrukce generátorů signálů 
může být nutnost provádět zkoušky systémů, kdy vyhodnocujeme změnu, kterou signál nabyl 
průchodem systémem, viz další kapitola. Dalším motivem může být přenos dat (zpráv) s využitím 
některé modulační techniky, signalizace apod. Typickým příkladem je zmíněný přenos dat optickým 
kabelem, kde potřebujeme kvalitní zdroj záření ve viditelném či jiném intervalu spektra. Nebo 
generátory pro účely vysílání s využitím elektromagnetického vlnění (televize, rozhlas).  Jde o aktivní 
přístup k tvorbě signálů, viz obr.2.3.  
 

 
 

Obr.2.3. Helium-neonový laser jako zdroj kvalitního světelného záření. 
 
2.1.3.3 Změna stavu systému působením signálu 

V předchozí kapitole jsem uvedl, že signály vyrábíme také za účelem zjišťování stavu systémů. Jde 
o aktivní přístup, kdy generovaný signál přivedeme na vstup systému, abychom následně zjišťovali 
jeho stav vyhodnocením změn signálu, procházejícího systémem. Mimoto však je skutečností, že 
procházející, resp. zpracovávaný signál, způsobí v systému jisté změny. Jde o změny jeho stavu, které 
se promítají do měřených parametrů. Jak vypadá taková vnitřní změna stavu systému? Záleží na 
konkrétní povaze systému. Může jít o změnu napětí či proudu některými součástkami u elektrického 
systému, změnu průřezu, délky či průhybu u mechanického nosníku apod. Změna těchto stavů, tedy 
typických parametrů, popisujících chování systému, je způsobena změnou stavu některých subsystémů 
(součástek, částí). Pokud působící signál způsobuje změnu velikosti těchto stavových veličin, 
hovoříme o kvantitativním působení. Působení signálu však může vyvolat i kvalitativní změny. Signál 
může způsobit přepnutí elektrického přepínače, zahlcení komunikačního kanálu, destrukci mechanické 
konstrukce atd. V tomto případě jde nejen o změnu stavu subsystémů, ale i o změnu jejich vazeb 
(propojení). A to se samozřejmě promítne do chování celého systému. Takový vliv signálů na systémy 
může být chtěným jevem, např. u zkoušek odolnosti či měření, ale může jít také o nechtěný, tedy 
parazitní jev. To vždy záleží na konkrétním posouzení. Typickým příkladem je působení 



 

mechanických kmitů či napětí na různé konstrukce s cílem rozpoznat jejich vlastnosti, příp. mezní 
stavy. Zajímavými jsou metody nedestruktivního testování materiálů. U řady komerčních produktů 
podobné zkoušky dokonce určují normy. Podobné je to s teplotním namáháním, korozí, odolnosti proti 
působení chemických vlivů, s ochranou proti střelným zbraním aj. Shrnuto, změny stavů systémů 
působením signálů jsou důležitou vlastností. Jejich vyhodnocením lze získat cenné informace o 
systémech a jejich vlastnostech. Velkou roli zde hraje zpětná vazba. Zjišťování stavů systémů signály 
může vést ke zpětné úpravě vlastností systémů. Toho se využívá při konstrukci systémů a jejich 
modelů. Na obr.2.4 vidíte mechanické železniční návěstidlo, jehož stav je ovládán mechanicky 
pohybem drátů.  

 

 
 

Obr.2.4. Stav mechanického dvojramenného návěstidla. 
 
 

2.2 Modelování systémů 
V této kapitole se seznámíme s pojmem model systému. Ukážeme si význam modelů, jejich 

základní druhy a použití a poukáži na rozdíly mezi reálnými systémy a jejich modely. 
 

2.2.1 Skutečný, reálně existující systém 
Jak bylo vysvětleno v kapitole 2.1, systémem je vzájemné propojení určité množiny subsystémů 

(prvků, součástek, částí) tak, že celek plní určitou funkci. Reálně existující systémy pracují vždy 
s reálnými signály. Jen pomocí reálných signálů můžeme zjišťovat stav reálných systémů. Tak např. 
zjistit stav akumulátoru automobilu lze jen měřením s využitím měřicích přístrojů. Podobně stav 
počasí zjistíme měřením signálů, jako jsou teplota, tlak apod. Někdy je třeba vyhodnotit menší 
množství signálů, jindy větší. Počet základních parametrů, které charakterizují vlastnosti systému, 



 

nazýváme stavem systému. A jak již víme, ke zjištění každého stavu je třeba znát příslušné signály. 
Stav systému je tedy vektorem (souborem) jeho klíčových parametrů. Přitom počet parametrů systému 
je, jak je popsáno v kapitole 2.1.2, relativní vzhledem k pozorovateli a účelu analýzy. V našem 
příkladu s počasím je zřejmé, že někomu postačí teplota, jiný vyžaduje ještě tlak a meteorolog bude 
získávat další parametry. Určování stavu systémů je v praxi často poměrně nákladné, zejména při 
vývoji nových systémů, kdy se analýza opakuje v jistých cyklech a je zdrojem dat pro úpravu 
vlastností subsystémů. Typické je to při vývoji nového modelu osobního automobilu, architektonicky 
neobvyklé mostní konstrukce aj. 

 

 
 

Obr.2.5. Příklad reálného systému - meteorologická 
stanice v katastru obce Sobotín v Jeseníkách 

(převzato z www.meteo.tombru.com). 
 

 
 Reálné systémy a práce s nimi: 

1. skutečný, reálně existující systém pracuje vždy s reálnými signály. 
2. Určit vlastnosti reálného systému znamená zjistit (změřit) reálné signály pomocí přístrojů. 
3. Stavem systému rozumíme souhrn (vektor) jeho klíčových parametrů. 
4. Počet parametrů, potřebných ke stanovení vlastností systému, je relativní vzhledem 

 k pozorovateli a účelu pozorování. 
5. Praktické měření parametrů systémů může být značně nákladné, zejména při jejich vývoji. 

 
 
2.3 Klasifikace systémů a jejich modelů 

Podobně jako u signálů platí, že každá snaha něco rozdělit, klasifikovat je poplatná tomu, kdo 
rozdělení provádí, resp. účelu, s nímž je k rozdělení přistupováno. Někdo dělí letadla v základním 
přístupu podle druhu pohonu (pístová, proudová), jiný preferuje primární rozdělení podle účelu stroje 
(dopravní, bojová, víceúčelová) a další podle doletu. Je zřejmé, že na reálné systémy i jejich modely se 
můžete dívat z mnoha úhlů a hledisek a to vás pak přivede k jejich rozdělení. Aby však byl v 
klasifikaci signálů a jejich modelů jistý řád, je vhodné se přidržet jednak logiky práce a pak také u nás 
i ve světě běžně užívaného a osvědčeného rozdělení. Jednotlivé podkapitoly psané níže jsou vždy 
jedním úhlem pohledu na systémy a modely systémů. V praxi je pochopitelné, že se některé doplňují a 



 

kombinují. Tak může jít o systém či model analogový a současně nestabilní, nebo číslicový a současně 
lineární a stacionární. Z terminologického hlediska je dále uváděná klasifikace systémů vždy 
pohledem na různé druhy jejich modelů. Jak již víte, lze reálné systémy modelovat různými druhy 
modelů podle účelu a možností. Ke každému druhu systému se váže jistý matematický modelový 
aparát. Ten nám ukazuje řadu zajímavých a užitečných vlastností systémů a zejména jejich souvislostí. 
V této kapitole se věnuji rozdělení a matematikou budeme výrazně šetřit. Půjde primárně o úvod do 
problematiky, který bude blíže rozveden v dalších partiích knihy. Je vhodné se také obohatit studiem 
další odborné literatury. 

 

2.3.1 Systémy analogové, diskrétní a číslicové 
Začněme tuto kapitolu zajímavou otázkou. Je reálný svět okolo nás spojitý (plynulý) anebo 

diskrétní, tedy projevující se „skokově“, resp. mající konečný počet svých stavů? Zkuste se nad 
položenou otázkou zamyslet. Naše každodenní zkušenost nám říká, že vše okolo nás je plynulé, 
spojité. Že v reálné praxi nenajdeme žádný systém, jehož stav by se měnil ideálně skokově, resp. že by 
zaujímal jen některé stavy a jiné ne. 

Představte si však železniční výhybku. Jde o systém, který má běžně dva (výjimečně více) pracovní 
stavy. Má-li jakýkoli systém konečný počet svých stavů (hodnot klíčových parametrů), nazýváme jej 
systémem diskrétním. Takovou výhybku můžeme tedy popsat dvěma stavy, např. přehozeno vlevo a 
přehozeno vpravo. Přisoudíme-li těmto stavům nikoli slovní, ale číselné vyjádření, hovoříme o 
systému číslicovém (stav 0, stav 1). Výhybka přehozená vlevo bude mít např. číslo 0, vpravo číslo 1. 
Číslicový systém je tedy zvláštním případem systému diskrétního, kdy jeho stavy jsou vyjádřeny čísly. 

Při bližším pohledu však zjistíme, že přechod mezi stavy u naší výhybky není ideální. Je plynulý, 
tzn., že mezi dvěma pracovními stavy můžeme nalézt libovolné množství (prakticky nekonečné) 
jiných stavů, vlastně poloh ramene výhybky, než dosáhne koncového stavu. Přechod je tedy plynulý, 
říkáme spojitý (souvislý). Z tohoto úhlu pohledu je výhybka systémem analogovým, spojitě se 
chovajícím. Pro takový systém je typické, že hodnoty jeho parametrů mají v jistém intervalu 
nekonečné množství hodnot (mění se spojitě). 

Je tedy naše pokusná výhybka systémem analogovým, diskrétním nebo číslicovým? Odpověď je 
překvapivá. Může být kterýmkoliv z uvedených systémů. Na čem to záleží? Na nás samotných, tedy 
roli pozorovatele, subjektu, jak jsem o tom psal již v kapitole 2.1.2. Záleží jen na tom, jakým modelem 
budeme reálný systém popisovat. Naše smysly nám denní zkušeností říkají, že všechny reálně 
existující systémy jsou analogové. Naše zkušenost je spojitá. Na základě vyhodnocení potřeb a 
možností však můžeme i takovým reálným systémům přisoudit model diskrétní, resp. číslicový. 
Děláme to tehdy, když jsou pro nás významné právě pracovní stavy systémů a ne přechody mezi nimi. 
To vede často k výraznému zjednodušení modelů, neboť se můžeme soustředit na principy a 
nezabývat se detaily. Číslicové modely systémů jsou v současné éře číslicových počítačů vyžadovány 
stále častěji. Počítače pracují s čísly, a proto je přirozené pracovat na nich s číslicovými modely. Kdy 
je vhodnější pracovat s modely analogovými? Samozřejmě tehdy, když pracujeme s analogovými 
systémy, kdy by číslicový model poskytoval příliš zjednodušené výsledky, nepostihující výrazné 
analogové aspekty, často nazývané reálné vlastnosti. Analogové modely mohou být však složitější a 
práce s nimi náročnější. V současné době se můžeme setkat např. s elektronickými systémy, které jsou 
analogové, avšak pracují s polovodičovými spínači, majícími konečný počet (zpravidla dva) stavů. 
Tyto systémy jsou obecně analogové, avšak periodické spínání umožňuje pohlížet na ně také jako na 
diskrétní, resp. číslicové systémy. Záleží na tom, co chcete se systémy dělat, jaké jejich parametry 
modelovat. 

V souvislosti s pojmy analogový, diskrétní a číslicový systém jde tedy o relativitu termínu 
vzhledem k volbě jeho modelu. 

 
Uveďme si zajímavý příklad. Uvažujme nějaký systém. Ve snaze po vyhodnocení jeho parametrů 

budeme zaznamenávat jeho signály, viz obr.2.9. Zde jsou ukázány tři modely signálu, produkovaného 
nějakým systémem. Analogový model (signál, rovnice) je přístupem spojitým. Závisle proměnná, tedy 
svislá osa grafu, může v intervalu Pap 5,5  nabývat libovolné hodnoty. Tato spojitost závisle 



 

proměnné je typická právě pro analogové systémy, viz [9], [16] a [23]. Spojité jsou přitom obě osy 
(proměnné). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Obr.2.9. K pojmům analogový, diskrétní a číslicový systém. 

 
 

Jestliže závisle proměnná modelu systému může nabývat jen omezený, konečný počet hodnot 
(kvant), jde obecně o systém diskrétní. V našem případě je volena také diskrétní osa nezávisle 
proměnné (zde času), avšak to není důležité, může být i spojitá. To, že jednotlivé stavy trvají stejnou 
dobu, není rozhodující. Mohou být každý jinak „dlouhý“, dokonce náhodně dlouhý. Konečný počet 
stavů je rozhodujícím kritériem, ne jejich délka. Jestliže budou obě (nebo více) proměnné (osy) 
diskrétní a závisle proměnná bude vyjádřena číselně, jde o číslicový model. Pak, v souladu s tabulkou 
v rámci obr.2.9, získáváme dva vektory čísel a to vektor nezávisle a vektor závisle proměnné. Pokud 
zapíšeme funkční hodnoty našeho signálu tlaku do závorky, hovoříme o posloupnosti. Posloupnost je 
tedy seznam čísel, odpovídající hodnotám (vzorkům) nějakého parametru. 

 
Jak je to s určením typu signálu při práci v systému MATLAB? Číslicový signál vyžaduje obě osy 

diskrétní. Navíc, abychom byli přesní, také kvantování (konečný počet hladin) a kódování do dnes 
nejčastěji využívané binární (dvojkové) soustavy. To je typické pro práci číslicových počítačů 
běžného typu. Pokud tedy budete mít v systému MATLAB vektor nějakých čísel, jde správně vzato o 
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diskrétní signál, neboť závisle proměnná nemusí mít vždy zaručen konečný počet stavů (kvantování), 
např. signál    4,2.0,6.0,1.1 ns , viz dále obr.2.10. Bude-li navíc zaručeno kvantování svislé osy 
grafu (konečný a daný počet úrovní v rámci nějakého intervalu), pak můžeme hovořit o číslicovém 
signálu i bez kódování do některé varianty dvojkového kódu (zjednodušení). Všimněte si, že v případě 
diskrétní osy času je na obr.2.9 uvedena hodnota tzv. vzorkovací periody vzT , tedy vzdálenosti mezi 

vzorky signálu. V případě periodických signálů je důležitým parametrem poměr  
0T

Tvz , viz např. [5] 

a [19]. 
V rámci jistého zjednodušení však budeme hovořit o číslicovém signálu všeobecně v případě práce 

s čísly v systému MATLAB (i bez kvantování hodnot). Navíc, použijete-li velký počet hodnot prvků 
vektoru čísel, bude se graf signálu „tvářit“ spojitě, i když ve skutečnosti není. Lze tím však simulovat 
práci s analogovými systémy (kromě volby příslušných metod analýzy apod.). 

 

  
 

Obr.2.10. Příklad tvorby číslicového signálu v prostředí MATLAB. 
 
 

Při práci v MATLAB budeme pracovat s číslicovými signály (již znáte podrobnosti), u kterých je 
na vodorovné ose grafů pouhé pořadí vzorků (posloupnost, vektor čísel), viz obr.2.10. Je-li třeba jiná 
veličina (čas, teplota aj.), je třeba ji mít k dispozici ve stejném počtu vzorků (funkce). Na obr.2.11 je 
dokumentována možnost práce s analogovými signály, které jsou však simulovány velkým počtem 
hodnot posloupností. Tento přístup bude použit také u dalších typů grafů, nejen časových průběhů 
signálů (kmitočtové charakteristiky apod.). 



 

  
 

Obr.2.11. Práce s analogovými signály v prostředí MATLAB. 
 
 

Poznamenejme, že při klasifikaci systémů jsme zatím vyhodnocovali signály, které získáme 
měřením či simulací nějakého systému. Popsat systém, jak jsem již zmínil, lze však také jiným druhem 
modelu, viz dále v knize. Vysvětlení pojmů analogový, diskrétní a číslicový však platí univerzálně. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2.3.4 Systémy se zpětnou vazbou a systémy bez zpětné vazby 
Zpětná vazba je nám lidem známa odpradávna. Naše běžná životní zkušenost je jí stále naplněna. 

Při chůzi, běhu, řízení vozidla apod. neustále sledujeme řadu vjemů (rychlost, vzdálenost od okolí aj.) 
a na základě vyhodnocení těchto mnoha parametrů dokážeme korigovat pohyb či jinou činnost. Bez 
zpětné vazby bychom automobilem jeli stále rovně anebo jak by nás napadlo bez ohledu na okolní či 
vnitřní situaci. Neustálá korekce naší činnosti vyhodnocováním řady vjemů je běžnou denní 
zkušeností. Tento koncept je blízký řídicím systémům, které vlastně pracují analogicky, jen k tomu 
využívají více či méně složitých technických (tedy neživých) strojů, přístrojů a dalších zařízení včetně 
software. 

 
2.3.4.1 Systémy se zpětnou vazbou 

Z hlediska technických věd můžeme napsat, že moderní pojetí termínu zpětná vazba (Feedback) se 
datuje přibližně od roku 1932, kdy byl zaregistrován U.S. Patent 2, 102, 671 na zesilovač s pevným 
zesílením. Podstatou patentu bylo odstranění tehdejších problémů s kolísáním zesílení zesilovače 
v závislosti na kmitočtu zpracovávaného signálu. Autorem patentovaného řešení byl Harold Stephen 
Black. H. Blacka napadlo, traduje se že při ranní procházce po mostě přes řeku Hudson v roce 1927, 
přivést část výstupního signálu zesilovače zpět na vstup. Tímto opatřením došlo k výrazné stabilizaci 
zesílení zesilovače. Podrobnosti např. na http://cs.wikipedia.org. 

Zpětnou vazbou rozumíme přivedení části výstupního signálu systému zpět na jeho vstup podle 
obr.2.31.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Obr.2.31. Signálová zpětná vazba systému. 
 

 
Na obr.2.31 předpokládáme pro jednoduchost lineární systém v harmonickém ustáleném stavu 

(HUS). Symboly K , A  a B  představují tzv. komplexní přenosy celého systému ( K ) a jeho dvou 
dílčích částí ( A  a B ). Jsou definovány poměrem výstupního signálu k signálu vstupnímu. Signály 
zde představují harmonické průběhy, definované tzv. fázory, viz blíže v [12]. Tečkami nad symboly 
naznačujeme, že jde o reálné funkce komplexní proměnné. Původní systém s přenosem A  je systém 
bez zpětné vazby. Z jeho výstupu je část signálu 2S  přivedena na vstup přes tzv. zpětnovazební 
subsystém (člen, prvek) s přenosem B . Vpravo vedle schématu je odvozeno, jak se původní přenos 
systému bez zpětné vazby A  změní na K  zavedením zpětné vazby díky B . Subsystém B  určuje, jaká 
část výstupního signálu a v jaké fázi se přičte ke vstupnímu signálu. 

Dvojitě podtržený výsledný vztah je znám jako tzv. Blackův vztah. Udává nám komplexní přenos 
zpětnovazebního systému (systému se zpětnou vazbou). Ve vztahu figurují dílčí přenosy A  a B . 
Protože v této knize není cílem probírat celou teorii zpětné vazby, uveďme, jaké důsledky zavedení 
zpětné vazby na systém může vyvolat. 
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Příklad 2.1. 
 
Vypočtěte celkové zesílení systému se zpětnou vazbou podle obr.2.31 je-li dáno: 

    01,0,90 1BA  a   5,02B . 
 
 
Řešení:  
 
 
 
 
Poznámka: sami se zamyslete, který z výsledků představuje jaký typ zpětné vazby. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

Obr.2.32. Zpětná vazba u analogových a) a číslicových systémů b). 
2.4.2 Vnitřní (stavový) popis systémů 

Vnitřní popis (model) systému předpokládá znalost vnitřní struktury systému tedy jeho 
subsystémů. Oproti vnějšímu popisu nás primárně zajímají vlastnosti signálů (veličin), které 
reprezentují výstupy vybraných subsystémů. Přitom je možné přejít z modelu vnitřního k modelu 
vnějšímu a tento přechod je vždy jednoznačný. Naopak, tedy přeměna vnějšího modelu na model 
vnitřní je cesta nejednoznačná, neboť jednomu vnějšímu popisu může obecně odpovídat nekonečně 
mnoho druhů vnitřní struktury. 
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2.4.2.1 Stavový model systému 

Pro ilustraci uvedeme tři stavové modely různých systémů. Kromě vlastního zápisu rovnic bude 
zajímavá také jejich maticová podoba. 
 
Příklad 2.2. 

 
Jde o lineární dynamický systém s jedním vnitřním stavem (veličinou) x , jednou budicí veličinou 
u  a jednou veličinou výstupní y . Symboly 1K , 2K  jsou konstantami (čísly). 
 
 
 
 
 
 
 
 
 
 
 
 
 
První rovnici modelu, ve které se vyskytuje derivace, budeme nazývat rovnicí dynamiky. Zde je 
obsažen vlastní dynamický model chování systému. Druhá rovnice je nazývána rovnicí výstupu, 
neboť specifikuje transformaci veličiny x  na výstup systému (rovnice výstupu nemusí být vždy 
určena). Veličinu (signál) x  budeme nazývat stavovou veličinou či stavovou proměnnou. Jak je 
vidět, rovnice dynamiky je diferenciální rovnicí (dynamický systém), v daném případě 1. řádu, a 
je psána tak, aby na levé straně byla pouze derivace. Maticové vyjádření je získáno intuitivně 
přímo z rovnic. 
 

 
 
Příklad 2.3. 

 
Nyní jde o lineární dynamický systém se dvěma vnitřními stavy (veličinami) 1x  a 2x , třemi 
budicími veličinou 1u , 2u  a 3u  a jednou veličinou výstupní y . 
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2.5.6 Realizace a implementace systémů 
Realizací či implementací rozumíme postupy uvedení něčeho do praxe. Ve slovnících a databázích 

můžete nalézt např. tvrzení, že „ … Implementace je uvedení teoreticky stanovené myšlenky do praxe 
za účelem jejího dalšího použití. Implementaci předchází plánování postupu a očekávaných výsledků“, 
viz http://cs.wikipedia.org/wiki/Implementace. 

V širším smyslu jde tedy o praktické využití. V případě analogových systémů hovoříme spíše o 
realizaci, u číslicových o implementaci. Je zde však ještě další, možno napsat užší chápání uvedených 
termínů. V analogové technice se pod pojmem realizace systému může rozumět nejen jeho skutečné 
vytvoření, ale také navržení modelu k praktické realizaci přímo směřující. Jako příklad z našeho oboru 
– elektrotechniky – můžeme uvést analogové kmitočtové filtry. Zatímco návrh filtru končí známou 
přenosovou funkcí, o realizaci hovoříme v případě známého schématu zapojení součástek spolu 
s jejich konkrétními hodnotami a parametry. Fyzická tvorba jakožto logické završení procesu realizace 
je samozřejmě možná, viz obr.2.77. 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 

Obr.2.77. Práce s analogovým systémem od návrhu po realizaci. 
 
 

Samozřejmě že není realizace jako realizace. Vždy je nutné přihlédnout k řadě aspektů jako např. 
ke kmitočtovému rozsahu buzení (parazitní prvky a jevy), kvalitě, velikosti a ceně použitých součástek 
(subsystémů), způsobu jejich propojení a vzájemného vlivu, typu prostředí (teplota, vibrace, prach), 
vlastní způsob využití systému (výuka, průmyslová aplikace) aj. Je zřejmé, že tento proces vyžaduje 
jistou zkušenost. 

V případě číslicových systémů je proces podobný tomu na obr.2.77. Zde také vycházíme z výsledku 
návrhu, kterým může být přenosová (systémová) funkce, diferenční rovnice, blokové schéma aj. Jak 
jsem však psal výše, číslicový systém je algoritmem, tedy myšlenkovým procesem. Tento proces není 
sám o sobě hmotně fyzický, nýbrž spíše informačního typu. Pro jeho praktické využití je však 
nezbytné, aby byl vhodným způsobem realizován. Praktická realizace číslicového algoritmu je 
nazývána implementací. Implementovat číslicový algoritmus znamená realizovat jej ve vhodném 
programovacím jazyku a s využitím vhodného hardware (stolní či přenosný počítač, jednočipový 

  722

7

10.95,310.28,6
10.95,3



ss

sK



 

mikropočítač, programovatelné hradlové pole, logické obvody aj.). V současné době je často dávána 
přednost programovatelným implementacím z důvodů snadné změny algoritmu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Obr.2.78. Práce s číslicovým systémem od návrhu po realizaci. 
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N = length(x);  % počet vzorků vst. signálu  x 
x1=0;  % počáteční podmínky xk-1 
x2=0;  % počáteční podmínky xk-2 
y1=0; % počáteční podmínky yk-1 
 
for k=1:N  % cyklus od 1 do N 
 y(k)=4.2*x(k)+1.8*x1+0.6*x2-0.3*y1; 
 x2=x1; 
 x1=x(k); 
 y1=y(k); 
end  % konec cyklu 



 

4 Stručný úvod do systému Simulink 
V kapitole 3.3 jsem představil systém Simulink jakožto graficky orientovanou nadstavbu vlastního 

MATLAB. Systémy se zde tvoří pomocí bloků, které jsou obsaženy v jejich tématicky uspořádané 
knihovně. Stručně napsáno, pracuje se především pomocí myši; bloky se z knihovny přetahují do tzv. 
modelu, pospojují podle logiky práce a po zadání maximálního času lze spustit simulaci s vhodně 
nastaveným tzv. ODE solverem, viz kapitola 2.4.1.2. Je zřejmé, že je-li potřeba, lze editovat celou 
řadu parametrů a měnit nastavení. Při prvních pokusech však doporučuji ponechat implicitní nastavení 
a věnovat se podstatě věci. Simulace systémů v časové doméně je založena na numerickém řešení 
sestavených obecně nelineárních diferenciálních rovnic. To vše vykonává systém skrytě. Chybová 
hlášení či varování slouží k řádnému odladění algoritmu. 

V této kapitole chci být maximálně stručný a nezatěžovat čtenáře sice zajímavými, avšak zpočátku 
nadbytečnými informacemi. Jako i při jiné práci, budeme postupovat od jednoduššího ke složitějšímu. 
Cílem je předložit vám podstatu věci a motivovat vás k samostatné práci, vlastní tvorbě a pokusům. 
V rámci pravidelných aktualizací se některé dílčí položky mohou pozměnit. Buďte proto pružnými 
čtenáři a uživateli. Zde půjde hlavně o to pochopit princip a základní možnosti. 

 

4.1 Spuštění systému Simulink 
Aby bylo možné Simulink spustit, je třeba jej mít nainstalován a tedy legálně vlastnit jeho licenci. 

O tom, zda je Simulink součástí vaší instalace se lze nejsnáze přesvědčit již známým příkazem ver, viz 
obr.4.1, resp. obr.1.1. 

 

 
 

Obr.4.1. Dotaz na obsah licence systému MATLAB. 
 
 

Je-li Simulink nainstalován, spustíte jej jednoduše myší díky tlačítku v levém horním rohu 
prostředí MATLAB, viz obr.4.2. 

 



 

 
 

Obr.4.2. Tlačítko pro spuštění systému Simulink. 
 

 
 

 
Obr.4.3. Část nabídky po spuštění systému Simulink. 

 
 

 
 
 



 

 
 

Obr.4.28. Import dat z Workspace s využitím bloku In. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

5 Příklady práce se systémy 
V této kapitole uvedu sbírku vybraných příkladů práce se systémy. Vzhledem k názornosti budu 

preferovat modely v prostředí Simulink. Je třeba připomenout, že řadu věcí lze v MATLAB udělat 
více způsoby a různými technikami. Je proto pochopitelné, že si předložené a další příklady můžete 
řešit vlastními postupy (místo modelů v Simulink napsat m-soubor, namísto vnitřních funkcí si napsat 
vlastní, realizovat Callback různým způsobem atp.). Mimoto, sám pracuji v oblasti elektrotechniky a 
elektroniky a proto si ne zcela detailně umím představit mnohost různých variant systémů ve vašich 
oborech. Jak jsem uvedl při diskusi o číslicových systémech, pojem systém již dnes není chápán pouze 
jako fyzicky existující zařízení. Může jít o myšlenkový postup, který si potřebujete ověřit. Z principu 
je to typické např. u finančních systémů. V MATLAB však vždy pracujeme s čísly, byť se někdy 
snažíme o napodobení analogových soustav, jak jsem uvedl. Rozlišení druhu systému je však třeba 
respektovat při volbě matematického modelu (rovnice diferenciální a diferenční, statické a dynamické, 
lineární a nelineární, deterministické a stochastické atd.). 

V dále uvedených příkladech se zaměřujeme na podstatu věci. Nebudu se již věnovat tvorbě 
Callback a doprovodných m-souborů, pokud to nebude mít souvislost s principem. V případě vaší 
potřeby není jistě problém si příklady obohatit a rozšířit. 

 

5.1 Analogové systémy 
Rozdělit systémy lze podle mnoha různých hledisek, jak jsem uvedl výše. Na základě zkušeností 

s prací s modely systémů se mně však jeví vhodné jako primární rozdělit systémy na analogové a 
číslicové. Důvodů je více. Mezi ty hlavní patří principiální odlišnosti matematických modelů, 
respektování spojitého a diskrétního charakteru signálů a dějů, diskuse o vzájemných souvislostech či 
transformacích systémových modelů a primárně časově orientované vnímání světa člověkem. 
V prostředí MATLAB lze pracovat s oběma hlavními druhy systémů současně, tedy s tzv. smíšenými 
systémy. Práce s nimi však vyžaduje jistou zkušenost. 
 
5.1.1 Kmitočtové filtry 

Analogové kmitočtové filtry (AKF) patří mezi nejpoužívanější analogové systémy. Jsou lineárními 
dynamickými systémy, takže pro ně platí vše výše uvedené, např. v kapitolách 2.3 a 2.4. Na těchto 
systémech si přiblížíme práci s podobnými systémy. Analogové filtry jsou používány přibližně sto let. 
Je zřejmé, že v současné době budou velmi dobře zvládnuté metody jejich analýzy, návrhu, příp. 
optimalizace a fyzické realizace. U nás i ve světě existuje množství kvalitní literatury, zmiňme alespoň 
[3], [4] a [8]. Pro práci s modely AKF jsou často využívány speciální programy, avšak i v systému 
MATLAB lze s nimi na jisté úrovni pracovat. Je však pravdou, že MATLAB je specializován zejména 
na filtry číslicové a ty analogové nemají zdaleka takovou podporu. 

 
5.1.1.1 Modelování filtrů a jejich analýza 

Analogové kmitočtové filtry (AKF) jsou, jak jsem zmínil, systémy lineárními a dynamickými. 
K jejich popisu se nejčastěji používají přenosové funkce jakožto vstupně-výstupní (vnější) model, viz 
kapitola 2.4.1.3. Vlastní prostředí MATLAB lze využít k modelování kmitočtových charakteristik, 
tedy v kmitočtové rovině, blíže v kapitole 2.3.2.2. Simulace AKF v rovině časové, tedy získání 
časových průběhů sledovaných signálů, je naopak snazší a z principu vhodnější v prostředí Simulink. 
Obě prostředí lze tedy s výhodou kombinovat a vzájemně provazovat. 

Protože práce s přenosovými funkcemi byla prakticky uvozena v kapitole 2.4.1.3, uvedu příklad, 
kombinující obě zmíněná prostředí. Na obr.5.1 je ukázán model s AKF, modelovaným pomocí bloku 
Transfer Fcn (zadání parametrů diskutováno výše).  



 

 
 

Obr.5.1. Modelování a simulace analogového filtru. 
 

Jedná se o filtr 2. řádu s rezonančním kmitočtem kHzfr 1  a činitelem jakosti  15Q . Filtr je 
buzen z generátoru obdélníkových periodických pulzů s velikostí V3 (signál pokládáme za napětí) a 
kmitočtem kHz1 (nastavení po dvojkliku na blok Signal Generator). Kromě osciloskopu Scope 
obsahuje model již jen blok s názvem Kmitoc. char. Ten je výše popsaným způsobem nastaven tak, že 
po dvojkliku myší na něj dojde k vykreslení kmitočtových charakteristik filtru. Model Model06 tedy 
spojuje simulaci v časové doméně spolu s modelováním v doméně kmitočtové. Časové průběhy 
vstupu a výstupu zajistí sám Simulink (maximální čas simulace je nastaven na 15ms, jak je vidět 
v horní části modelu). O vykreslení kmitočtových charakteristik se musíme postarat sami a to tvorbou 
Callback, viz kapitola 4.10.2. Obsah pole pro definici Callback ukazuje obr.5.2. Připomínám, že 
uvedené pole získáte tak, že označíte blok Kmitoc. char. a z menu modelu vyberete položky 
Edit/Block Properties... a následným výběrem položek Callbacks a OpenFcn*.  

 



 

 
 

Obr.5.2. Zdrojový text Callback pro kreslení kmitočtových charakteristik filtru. 
 
 

Uvedeným postupem vytvoříte Callback  bloku Kmitoc. char. Vše uložte, spusťte simulaci a poté 
dvakrát klikněte na onen blok. Dojde k zobrazení kmitočtových charakteristik daného filtru, viz 
obr.5.3. Význam příkazů by neměl činit potíže. Pomocí get_param se zjišťují parametry bloku 
Transfer Fcn. 

 

 
 

Obr.5.3. Kmitočtové charakteristiky filtru. 



 

5.2 Číslicové systémy 
Číslicové systémy mají v prostředí MATLAB podstatně větší podporu, než jejich analogové 

ekvivalenty. Je to pochopitelné, vzhledem k zaměření celého systému a soudobým trendům, 
preferujícím digitalizaci prakticky všude kolem nás. Aplikační možnosti číslicových systémů jsou 
značné stejně jako univerzálnost použití. Zatímco analogové systémy lze prakticky provozovat pouze 
na základě reálných zařízení, číslicové systémy mají tu přednost, že jsou vlastně algoritmy, tedy 
myšlenkovými pochody. A ty lze realizovat, píšeme spíše implementovat, na nejrůznějším hardware 
od univerzálních mikropočítačů, přes PC až ke specializovaným signálovým procesorům a hradlovým 
polím. V poslední době jsme také svědky jisté integrace analogových a číslicových systémů na jedné 
platformě. Hovoříme o smíšených systémech (pole, sdružující digitální i analogové stavební bloky). 

K nejrozšířenějším číslicovým systémům náleží kromě modulačních a kódovacích systémů 
číslicové filtry. Jsou poměrně dobře propracovány jak po stránce teoretické, tak aplikační 
(implementační). Kromě rychlosti jsou málo závislé na hardware a umožňují snadnou modifikaci 
přeprogramováním. Proto se v této kapitole zaměříme zejména na ně. 

 

5.2.1 Lineární číslicové filtry 
Při práci s číslicovými filtry (ČF) je třeba, analogicky filtrům analogovým, jistou sumu 

teoretických znalostí a zkušeností. Na stránkách této knihy se jimi nemůžeme blížeji věnovat. Naštěstí 
o kvalitní literaturu není nouze jak ve světě kolem nás, tak v ČR, viz např. [3], [5], [11], [17], [18] a 
[22]. Některé základy jsem nastínil v kapitolách 2.3.1.2 a 2.5.7. V této knize se proto zaměříme na 
základní přístup a praktickou realizaci tak, abyste pak již mohli dále své znalosti a zkušenosti relativně 
sami rozšiřovat a zkvalitňovat. 

Číslicový filtr (ČF) je, jak jsem naznačil výše, algoritmus, pracující s čísly. Jeho úkolem je načítat 
čísla z paměti (proměnné), podrobit je jistým úpravám a poslat je na svůj výstup, tedy opět do 
nějakého paměťového úložiště (registru, proměnné apod.). Zpravidla se tak děje v určitých 
pravidelných krocích či intervalech (vzorcích), které jsou řízeny oscilátorem hardwarových zařízení 
(hodinový či vzorkovací kmitočet). Tyto filtry jsou systémy dynamickými, ale z principu mohu být 
systémy lineárními i nelineárními na rozdíl od analogových filtrů. My si zde budeme všímat ČF 
lineárních a to z důvodů jejich rozšíření a menších nároků na předchozí znalosti. Za již delší dobu 
jejich používání bylo vypracováno poměrně velké množství nejrůznějších přístupů k jejich návrhu a 
implementaci (praktickému nasazení, tedy filtrování číslicových dat). Je třeba si zvyknout na jeden 
důležitý fakt a sice to, že při práci s ČF (ale nejen s nimi) bude hrát často důležitou roli vzorkovací 
kmitočet nebo perioda. Je to typické především, ale nejen, u těch ČF, které pracují s čísly, jež 
představují vzorky původně analogových signálů. Při číslicovém zpracování (DSP - Digital Signal 
Processing) analogových dat je třeba respektovat některé důležité vlastnosti těchto signálů a těm návrh 
ČF přizpůsobit. 

 
5.2.1.1 Modelování filtrů a jejich analýza 

Nástroje k základní práci s číslicovými filtry (ČF) jsou soustředěny především v knihovnách Signal 
Processing ToolboxTM (vlastní MATLAB) a Signal Processing BlocksetTM (Simulink). Další 
specializované knihovny jsou zaměřeny na zpracování obrazů, videa, na oblast komunikační techniky 
apod. Pro práci s filtry existují navíc zvláštní balíky funkcí Filter Design ToolboxTM a Filter Design 
HDL CoderTM. Tyto knihovny však nevlastníme. I tak lze ale s ČF pracovat, avšak nezbytnou výbavou 
je alespoň zmíněný Signal Processing Toolbox. 

Pracovat s ČF lze nejméně dvěma způsoby: 
 
 ručně psát příslušné příkazy s požadovanými parametry, 
 využívat interaktivní podporu (práce s myší a menu zvláštních oken). 
 

Na obr.5.13 je ukázka nabídky systému na dotaz help signal a hlavní struktury knihovny Signal 
Processing Toolbox po jejím zobrazení v interaktivním helpu. Zkuste si dále rozbalit dílčí podnabídky, 
např. Digital Filters nebo FDATool. Možnosti jsou poměrně široké. 



 

 

 
 

Obr.5.13. Základní nabídka knihovny Signal Processing Toolbox. 
 
 

V této kapitole si blíže všimneme analýzy lineárních ČF. Filtr bude zadán svou přenosovou 
(systémovou) funkcí analogicky svému analogovému protějšku. Na rozdíl od něj však přenosová 
funkce nyní nebude mít souvislost s Laplaceovou transformací, viz kapitolu 2.4, ale s transformací Z. 
Transformací Z se nebudeme blíže zabývat. Postačí informace, že lineární ČF je definován koeficienty 
(nebo nulovými body a póly) své přenosové funkce, jež je opět racionální funkcí lomenou. Nezávisle 
proměnná těchto funkcí souvisí právě se zmíněnou Z transformací. Blíže např. v [3], [5] a [18]. 

Mezi typické výstupy analýzy ČF náleží zejména: 
 
 kmitočtové charakteristiky (také číslicový algoritmus má kmitočtově závislý přenos), 
 průběh impulzní odezvy (reakce na diskrétní jednotkový impulz), 
 odezva na vybrané budicí signály (posloupnosti vzorků na vstupu), 
 rozložení nulových bodů a pólů v Gaussově komplexní rovině, resp. rovině Z (stabilita), 
 další možné průběhy. 
 
Uvažujme číslicový filtr (ČF) 8. řádu. Tento filtr je definován svou přenosovou (systémovou) 

funkci ve formě jejích koeficientů, viz obr.5.14. 
 

 
 

Obr.5.14. Koeficienty čitatele a jmenovatele přenosové funkce ČF 8. řádu. 
 
 



 

Na obrázku výše vidíte použití funkce cheby1, kterou jsem již aplikoval v kapitole 5.1.1.2 při 
návrhu analogového filtru. Není-li v rámci jejich parametrů použit symbol ‘s‘, pak jde vždy o návrh 
ČF. Přenosová funkce navrženého ČF vypadá takto: 
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Nezávisle proměnnou je v případě ČF operátor Z transformace, psaný s malým z. Platí: 
 

 ,VZTjez   (5.2) 

kde VZT  je vzorkovací perioda. Jako parametry ČF z obr.5.14 dosazujeme řád filtru (zde 8.), dále 
zvlnění modulové kmitočtové charakteristiky v propustném pásmu v [dB], v našem příkladě -3dB. 
Třetím parametrem je mezní kmitočet filtru zadaný v intervalu 1,0 . Je-li tento kmitočet zadán na 
hodnotu 1, pak odpovídá polovině vzorkovacího kmitočtu (Nyquistův kmitočet). Je třeba si zvyknout, 
že ČF se navrhují relativně vzhledem k uvažované vzorkovací frekvenci. Na obr.5.15 je výpočet a 
zobrazení kmitočtových charakteristik filtru. Je využito vnitřní funkce freqz s analogickým použitím 
jako freqs, viz kapitola 2.4.1.3. Parametry příkazu freqz jsou čitatel a jmenovatel přenosové funkce a 
počet bodů, ve kterých je charakteristika vypočtena a zobrazena.  

Na základě vztahu (5.2) můžeme konstatovat, že kmitočtové charakteristiky ČF jsou periodickými 
funkcemi, které se opakují s periodou VZT . Toto opakování si můžeme zobrazit, pokud necháme 
kmitočtové charakteristiky vypočítat a zobrazit nikoli do poloviny, nýbrž do celé hodnoty vzorkovací 
frekvence podle obr.5.16. Charakteristiky se jakoby periodicky zrcadlí, důkazy viz nabízené 
publikace. 

 
 



 

 
 

Obr.5.15. Získání kmitočtových charakteristik ČF z obr.5.14. 
 

 

5.3 Poznámka k fyzikálnímu modelování 
Jednou z knihoven systému MATLAB, zobrazených na obr.1.1, je i SimscapeTM. Jedná se o 

rozšíření systému Simulink a nabízí modelování a simulaci systémů z různých oborů, tzv.   
multidomain systémů. Uživatel může pracovat s bloky systémů elektrických, mechanických, 
hydraulických, tepelných aj. Práce s tímto tzv. fyzikálním modelováním má svá specifika. Především 
jde o práci na úrovni součástek (subsystémů, prvků), ze kterých se skládá celý složitější systém. Např. 
v našem oboru, elektrotechnice, jde vlastně o práci na úrovni schématu zapojení, kdy jsou k dispozici 
jak vlastní topologie obvodu (logika zapojení), tak hodnoty parametrů součástek. Uživatel si 
z knihovny Simscape vybírá součástky (prvky) a zapojuje je podle logiky práce. Zajištění vlastní 
simulace se rovněž odlišuje od běžné práce s bloky v prostředí Simulink. Pro styk prvků Simscape 
s běžnými bloky Simulink jsou k dispozici zvláštní konvertory SPS a PSS. Simulace je zajištěna díky 
bloku Solver Configuration, jenž musí být v každém modelu obsažen. Signály, které uživatel požaduje 
k zobrazení (výpočtu), resp. které si přeje do modelu přivést jako zdrojové z běžných bloků, jsou 
přístupné díky tzv. senzorům (v elektrotechnice senzory napětí a proudů). Tvorba modelu se tak 
v některých rysech odlišuje od běžné práce s modely. 

Na obr.5.39 vidíte běžný jednoduchý model zesilovače se zesílením 2.  
 



 

 
 

Obr.5.39. Příklad běžného modelování zesilovače v prostředí Simulink. 
 
 

Zesílení 2 je jednoduše definované pomocí bloků Gain a Fcn. Tento model je modelem ideálním, 
zahrnujícím pouze jeden parametr a to zesílení. Podobný přístup je výhodný pro svou jednoduchost a 
rychlost včetně pohodlné změny zesílení. Je vhodný při ověřování principů, kdy je možné se vyhnout 
parazitním nebo lépe napsané reálným vlastnostem zesilovačů, které však nejsou principiální. 

Podívejte se nyní na obr.5.40. 



 

 
 

Obr.5.40. Fyzikální model zesilovače se zesílením 2. 
 
 

 
 

 


